
Midterm Project
Part I

Instructions for Instructors

The midterm project is divided into 3 parts. You can use the 3 parts in various ways depending
on how much time you wish to devote to this project or on the technical level of your students.

• All 3 parts can be assigned to individual students. The order of completion among the 3
parts does not matter.

• The class can be divided into teams, with each team completing Part 1 or Part2
• Part 3 can be used in conjunction with Parts 1 or 2 for more advanced students/classes.

Make sure the students save their work in files, so you can check them and so that they can easily
be amended to packages, functions and packages in later projects.

Project setup: The Data
This project will use a case study called STUDENT ADMINISTRATION or SA. A set of
database tables is used to manage a school’s course offerings as delivered by instructors in many
classes over time. Information is stored about classes that are offered, the students who take
classes, and the grades the students receive on various assessments. The school administrators
can use the SA database to manage the class offerings and to assign instructors. Teachers can
also use the SA database to track student performance.

The database objects for this project are already in your accounts and they are as follows:

Tables:

INSTRUCTORS
SECTIONS
COURSES
CLASSES
ASSESSMENTS
STUDENTS
ENROLLMENTS
CLASS_ASSESSMENTS
ERROR_LOG
GRADE_CHANGES

Sequence:

ASSESSMENT_ID_SEQ

Oracle Academy 1 Database Programming with PL/SQL
 Copyright © 2008, Oracle. All rights reserved.

Synonyms:
sect FOR sections
instr FOR instructors
enroll FOR enrollments
stu FOR students
cl_assess FOR class_assessments
cl FOR classes
cour FOR courses
assess FOR assessments

Oracle Academy 2 Database Programming with PL/SQL
 Copyright © 2008, Oracle. All rights reserved.

Part 1: Student Information

1. Create an anonymous PL/SQL block to enroll a student in a particular class. Make sure the
students save it in a file called enroll_student_in_class.sql . You will use the
ENROLLMENTS table. Accept a STU_ID and CLASS_ID as input parameters. Use
“today’s date” for the ENROLLMENT_DATE and the string ‘Enrolled’ for the STATUS.

 Tables used: ENROLLMENTS
 Topics Incorporated ==> Scalar variable; %TYPE, INSERT; COMMIT;

Suggested Solution:

DECLARE
v_stu_id enrollments.stu_id%TYPE := :student_id;
v_class_id enrollments.class_id%TYPE := :class_id;
v_times_enrolled PLS_INTEGER;
BEGIN
 SELECT COUNT(*) INTO v_times_enrolled
 FROM enrollments
 WHERE class_id = v_class_id
 AND stu_id = v_stu_id;

 INSERT INTO enrollments
 (enrollment_date, class_id, stu_id, status)
 VALUES
 (SYSDATE, v_class_id, v_stu_id, 'Enrolled');
COMMIT;

END;

2. Create an anonymous block to drop a student from a class. Save the block in a file called

drop_student_from_class.sql. You will use the ENROLLMENTS table. Accept a STU_ID
and CLASS_ID as input parameters.

Tables used: ENROLLMENTS
Topics Incorporated ==> %TYPE; DELETE; SQL%ROWCOUNT; COMMIT;

Oracle Academy 3 Database Programming with PL/SQL
 Copyright © 2008, Oracle. All rights reserved.

Suggested Solution:

DECLARE
v_stu_id enrollments.stu_id%TYPE := :stu_id;
v_class_id enrollments.class_id%TYPE := :class_id;
BEGIN
 DELETE FROM enrollments
 WHERE class_id = v_class_id AND stu_id = v_stu_id;
 IF SQL%ROWCOUNT = 0 THEN
 DBMS_OUTPUT.PUT_LINE('Student '|| v_stu_id ||
 ' is not enrolled in class '|| v_class_id);
 END IF;
 COMMIT;

END;

3. Create an anonymous block that displays all of the classes a student has been enrolled in

within the most recent 6 years. Save the block in a file student_class_list.sql. You will use
the ENROLLMENTS table. For example: If you run your program on May 10, 2006, you
should display all enrollments between May 10, 2000 and May 10, 2006. Accept the STU_ID
as an input parameter. For each enrollment, display the ENROLLMENT_DATE,
CLASSS_ID and STATUS.

Tables used: ENROLLMENTS
Topics Incorporated ==> %TYPE; SYSDATE, ADD_MONTHS, Explicit cursor to find all
courses for the provided Student ID;DBMS_OUTPUT to display the list of classes.

Suggested Solution:

DECLARE
 v_stu_id enrollments.stu_id%TYPE := :stu_id;
CURSOR stu_class_cur IS
 SELECT enrollment_date, class_id, status
 FROM enrollments
 WHERE stu_id = v_stu_id
 AND enrollment_date
 between ADD_MONTHS (SYSDATE,-72) and SYSDATE;
BEGIN
 DBMS_OUTPUT.PUT_LINE('Student ' || v_stu_id ||
 ' is enrolled in the following classes:');
 FOR stu_class_rec IN stu_class_cur LOOP
 DBMS_OUTPUT.PUT_LINE('Class: ' ||stu_class_rec.class_id ||
' Enrolled on: ' || stu_class_rec.enrollment_date ||
' and has a status of: '|| stu_class_rec.status);
 END LOOP;
 END;

Oracle Academy 4 Database Programming with PL/SQL
 Copyright © 2008, Oracle. All rights reserved.

4. Create an anonymous block to add “n” new classes for a particular course. Save the block in

a file called add_new_classes.sql Accept the following IN parameter:
• Number of new classes required. Set a default value of 1.
• Course id; For each new class, use “today”as the START_DATE.
• Period, to specify what days the class meets.
• Frequency, to specify how often it meets.
• Instructor id, who is teaching the class(s).

There are 2 ways you can generate a new CLASS_ID.
• First use a SELECT to find out what is currently the highest CLASS_ID. Increment

this number by 1 for each new class you add. For example: When you run your
program, the highest CLASS_ID is 12 and you want to create 3 new classes. Your
new CLASS_IDs would be 13, 14, and 15.

• Create a sequence number that starts with a number higher than the maximum
CLASS_ID. Use sequence_name.NEXTVAL in your INSERT statement.

• Test your program by adding 4 new classes for COURSE_ID #1001. Also test your
default by calling the program to add only one class for COURSE_ID #1002.

Note for the teacher: It is probably more likely and safer to use a sequence number for the
class_id. If 2 sessions are calling this program at the same time, there is a small chance the
same MAX(class_id) could be found. This would cause the second set of INSERTS to fail.
The first option is okay for this exercise, but you might discuss this interesting subtlety with
your students.

Tables used: CLASSES
Topics Incorporated ==> SELECT; INSERT; COMMIT; DEFAULT value; Using a LOOP
to only insert “n” new rows.

Suggested Solution 1:

DECLARE
 v_number_new_classes PLS_INTEGER :=
 NVL(:number_of_new_cl, 1);
 v_course_id classes.course_id%TYPE :=
 :course_id;
 v_period classes.period%TYPE := :period;
 v_frequency classes.frequency%TYPE :=
 :frequency;
 v_instructor classes.instr_id%TYPE :=
 :instr_id;
 v_current_max_class_id classes.class_id%TYPE;
BEGIN
 SELECT MAX(class_id)
 INTO v_current_max_class_id
 FROM classes;

Oracle Academy 5 Database Programming with PL/SQL
 Copyright © 2008, Oracle. All rights reserved.

 FOR loop_counter IN 1..v_number_new_classes LOOP
 INSERT INTO classes (class_id, start_date,course_id,
 period, frequency,instr_id)
 VALUES (v_current_max_class_id + loop_counter,
 SYSDATE, v_course_id,
 v_period,v_frequency,v_instructor);
 COMMIT;
 END LOOP;

END;

Suggested Solution 2:

SELECT MAX(class_id)
 FROM classes;
CREATE sequence class_id_seq
 START with number_returned_from_SELECT + 1
 INCREMENT BY 1
 NOCACHE;

DECLARE
 v_number_new_classes PLS_INTEGER :=
 NVL(:no_of_new_classes, 1);
 v_course_id classes.course_id%TYPE := :course_id;
 v_period classes.period%TYPE := :period;
 v_frequency classes.frequency%TYPE := frequency;
 v_instructor classes.instr_id%TYPE := :instr_id;
BEGIN
 FOR loop_counter IN 1..v_number_new_classes LOOP
 INSERT INTO classes (class_id, start_date,course_id,
 period, frequency,instr_id)
 VALUES (class_id_seq.NEXTVAL,SYSDATE, v_course_id,
 v_period,v_frequency,v_instructor);

 COMMIT;
 END LOOP;

END;

Oracle Academy 6 Database Programming with PL/SQL
 Copyright © 2008, Oracle. All rights reserved.

Part 2: Teacher Tools

1. Create an anonymous block that a teacher can run to see the students in a course across all
classes of that course. Save the block in a file called course_roster.sql. Accept the
INSTR_ID and COURSE_ID. For each ENROLLMENT, display: CLASS_ID, STATUS,
Student FIRST_NAME and LAST_NAME.

Tables used: ENROLLMENTS; CLASSES; STUDENTS
Topics Incorporated ==> SELECT with JOIN; Explicit Cursor

Suggested Solution:

DECLARE
 v_instr_id classes.instr_id%TYPE := :instr_id;
 v_course_id classes.course_id%TYPE := :class_id;
 CURSOR stu_course_cur IS
 SELECT e.class_id, e.status, s.first_name, s.last_name
 FROM enrollments e, classes c, students s
 WHERE e.class_id = c.class_id
 AND e.stu_id = s.stu_id
 AND c.course_id = v_course_id
 AND c.instr_id = v_instr_id;

BEGIN
 DBMS_OUTPUT.PUT_LINE('Course ' || v_course_id ||
 ' has the following students:');
 FOR stu_course_rec IN stu_course_cur LOOP
 DBMS_OUTPUT.PUT_LINE('Class: ' || stu_course_rec.class_id ||
'Student: '|| stu_course_rec.first_name || ' ' ||
stu_course_rec.last_name ||
' with a status of: ' || stu_course_rec.status);

 END LOOP;

END;

2. Create an anonymous block which will convert a number grade to a letter grade. Save your
work in a file called convert_grade.sql. Prompt for a number grade. RETURN a CHAR
value. Use the following rules: A:90 or above, B: >=80 and<90 , C: >=70 and < 80, D: >=60
and < 70, F:<60.

Tables used: None
Topics Incorporated ==> Scalar variables...NUMBER IN; CHAR RETURNED; IF or CASE
Statement (A=90 to 100, B=80-90, C=70-80, D=60-70, F=<60;

Oracle Academy 7 Database Programming with PL/SQL
 Copyright © 2008, Oracle. All rights reserved.

Suggested Solution 1:

DECLARE
 v_numeric_grade NUMBER := :Number_Grade;
 v_letter_grade CHAR(1);
BEGIN
IF v_numeric_grade >= 90.0 THEN v_letter_grade := 'A';
 ELSIF v_numeric_grade >= 80.0 THEN v_letter_grade := 'B';
 ELSIF v_numeric_grade >= 70.0 THEN v_letter_grade := 'C';
 ELSIF v_numeric_grade >= 60.0 THEN v_letter_grade := 'D';
 ELSE v_letter_grade := 'F'; END IF;
DBMS_OUTPUT.PUT_LINE(v_letter_grade);
END;

Suggested Solution 2:

DECLARE
 v_numeric_grade NUMBER := :Number_Grade;
 v_letter_grade CHAR(1);
BEGIN
v_letter_grade :=
 CASE WHEN v_numeric_grade >= 90.0 THEN 'A'
 WHEN v_numeric_grade >= 80.0 THEN 'B'
 WHEN v_numeric_grade >= 70.0 THEN 'C'
 WHEN v_numeric_grade >= 60.0 THEN 'D'
 ELSE 'F'
 END;
DBMS_OUTPUT.PUT_LINE(v_letter_grade);
END;

3. Create an anonymous block that will RETURN the number of students in a particular class.

Save your work in a file called student_count.sql. Accept a CLASS_ID as a parameter.

Tables used: ENROLLMENTS
Topics Incorporated ==> Scalar variable...INTEGER; SELECT COUNT(*) INTO variable
FROM enrollments where class_id = ...; using a User defined function in SQL.

Oracle Academy 8 Database Programming with PL/SQL
 Copyright © 2008, Oracle. All rights reserved.

Suggested Solution:

DECLARE
 v_class_id classes.class_id%TYPE := :class_id;
 v_student_count PLS_INTEGER;
BEGIN
 SELECT COUNT(*)
 INTO v_student_count
 FROM enrollments
 WHERE class_id = v_class_id;
 DBMS_OUTPUT.PUT_LINE(v_student_count);

END;

4. Create an anonymous block which a teacher can run to insert a new assignment

(ASSESSMENT) including a DESCRIPTION. Save the program in a file called
create_assignment.sql. Use the ASSESSMENT_ID_SEQ sequence to generate the
class_assessment_id.

Tables used: ASSESSMENTS,
Topics Incorporated ==> SQL INSERT; Use of sequence in INSERT;

Suggested Solution:

DECLARE
 v_assign_descrip assessments.description%TYPE :=
:assessment_description;
BEGIN
 INSERT INTO assessments (assessment_id, description)
 VALUES (assessment_id_seq.NEXTVAL, v_assign_descrip);
 COMMIT;

END;

5. Create an anonymous block that a teacher can run to insert the student's grade on a particular

assignment. Save the program in a file called enter_student_grade.sql. Accept a
NUMERIC_GRADE, CLASS_ASSESSMENT_ID, CLASS_ID and STU_ID. Use
“today’s” date for the DATE_TURNED_IN.

Tables used: CLASS_ASSESSMENTS
Topics Incorporated ==> SQL INSERT; SYSDATE.

Oracle Academy 9 Database Programming with PL/SQL
 Copyright © 2008, Oracle. All rights reserved.

Suggested Solution:

DECLARE
 v_cl_assessment_id
 class_assessments.class_assessment_id%TYPE :=
:class_assessment;
 v_numeric_grade
 class_assessments.numeric_grade%TYPE := :num_grade;
 v_class_id
 class_assessments.class_id%TYPE := :class_id;
 v_stu_id
 class_assessments.stu_id%TYPE := :std_id;
 v_assessment_id
 class_assessments.assessment_id%TYPE := :ass_id;
BEGIN
 INSERT INTO class_assessments
 (class_assessment_id, date_turned_in, numeric_grade,
 class_id, stu_id, assessment_id)
 VALUES
(v_cl_assessment_id, SYSDATE, v_numeric_grade, v_class_id,
 v_stu_id, v_assessment_id);
 COMMIT;

END;

Oracle Academy 10 Database Programming with PL/SQL
 Copyright © 2008, Oracle. All rights reserved.

Part 3: School Administrator’s Tools

1. Create an anonymous block to list any enrollments which have NEITHER a

FINAL_NUMERIC_GRADE or FINAL_LETTER_GRADE. Save the program in a file
called show_missing_grades.sql. Accept a start_date and end_date to establish a date range.
Display only enrollments between those 2 dates. Write your program so the start_date and
end_date are optional. If both dates are not entered, display all applicable enrollments for the
past year, and include a note about the date range. For each enrollment, list the CLASS_ID,
STU_ID, and STATUS. Order the output by ENROLLMENT_DATE with the most recent
enrollments first.

Tables used: ENROLLMENTS
Topics Incorporated ==> SQL with BETWEEN; Dates; NULL values in a database column,
MONTHS_BETWEEN or other way to find the “past year.”

Suggested Solution:

DECLARE
 v_start_date DATE DEFAULT ADD_MONTHS(SYSDATE,-12);
 v_end_date DATE DEFAULT SYSDATE;
 CURSOR no_grades_cur IS
 SELECT class_id, stu_id, status
 FROM enrollments
 WHERE final_numeric_grade IS NULL
 AND final_letter_grade IS NULL
 AND enrollment_date BETWEEN v_start_date and v_end_date
 ORDER BY enrollment_date DESC;
BEGIN
 IF v_start_date IS NULL OR v_end_date IS NULL
 THEN
 DBMS_OUTPUT.PUT_LINE
 ('You have not specified both dates. The listing will show
all enrollments for the past year.');
 END IF;
 DBMS_OUTPUT.PUT_LINE
 ('Date range: Between ' || v_start_date || ' and ' ||
v_end_date || '.');
 DBMS_OUTPUT.PUT_LINE
 ('The following enrollments have no grade.');
 FOR no_grades_rec IN no_grades_cur LOOP
 DBMS_OUTPUT.PUT_LINE ('Class ID ' || no_grades_rec.class_id
|| ' – Student ID ' || no_grades_rec.stu_id || ' with a status
of: ' ||no_grades_rec.status);
 END LOOP;
 END;

Oracle Academy 11 Database Programming with PL/SQL
 Copyright © 2008, Oracle. All rights reserved.

2. Create an anonymous block to find the average grade for a class. Save the program in a file
called compute_average_grade .sql. Assume the class has used numeric_grades. Accept a
CLASS_ID. Return the average grade.

Tables used: ENROLLMENTS
Topics Incorporated ==> SQL with AVG function

Suggested Solution:

DECLARE
 v_class_id enrollments.class_id%TYPE := :class_id;
 v_avg_grade enrollments.final_numeric_grade%TYPE;
BEGIN
 SELECT AVG(final_numeric_grade)
 INTO v_avg_grade
 FROM enrollments
 WHERE class_id = v_class_id;

 DBMS_OUTPUT.PUT_LINE('The average grade in class '||
v_class_id ||' is ' || v_avg_grade);

END;

3. Create an anonymous block to return the number of classes offered for a given course. Save

the program in a file called count_classes_per_course.sql.

Tables used: CLASSES
Topics Incorporated ==> SQL SELECT with COUNT.

Suggested Solution:

DECLARE
 v_course_id classes.course_id%TYPE := :course_id;
 v_num_classes PLS_INTEGER;
BEGIN

 SELECT COUNT(*)
 INTO v_num_classes
 FROM classes
 WHERE course_id = v_course_id;

 DBMS_OUTPUT.PUT_LINE('There are ' ||v_num_classes || '
students enrolled in class '|| v_course_id);

END;

Oracle Academy 12 Database Programming with PL/SQL
 Copyright © 2008, Oracle. All rights reserved.

Oracle Academy 13 Database Programming with PL/SQL
 Copyright © 2008, Oracle. All rights reserved.

4. Create an anonymous block to list all classes offered between a range of dates. Save your
program in a file called show_class_offerings.sql. Accept a start date and end date. For each
class found, display the CLASS_ID, START_DATE, instructor FIRST_NAME and
LAST_NAME, course TITLE and SECTION_CODE.

Tables used: CLASSES, INSTRUCTORS, COURSES,ENROLLMENTS
Topics Incorporated ==> Using dates; SQL Join; %TYPE.

Suggested Solution:

DECLARE
 v_start_date DATE := :Start_date;
 v_end_date DATE := :End_date;
 CURSOR classes_info_cur IS
 SELECT cl.class_id, cl.start_date,
 i.first_name, i.last_name,
 cour.title, cour.section_code
 FROM classes cl, courses cour, instructors i
 WHERE start_date BETWEEN v_start_date AND v_end_date
 AND cl.course_id = cour.course_id
 AND cl.instr_id = i.instructor_id
 ORDER BY 1,2,4;
--
BEGIN
 DBMS_OUTPUT.PUT_LINE
('Date range: Between ' || v_start_date || ' and ' ||
v_end_date || '.');
 DBMS_OUTPUT.PUT_LINE
('Classes Information.');
 FOR classes_info_rec IN classes_info_cur LOOP
 DBMS_OUTPUT.PUT_LINE (
'Class ID ' || classes_info_rec.class_id ||
' - Start Date' || classes_info_rec.start_date ||
' – Instructor ' || classes_info_rec.first_name || ' ' ||
classes_info_rec.last_name ||
' – Course Title '|| classes_info_rec.title ||
' – Section Code ' || classes_info_rec.section_code);
 END LOOP;
END;

	Project setup: The Data
	4. Create an anonymous block to add “n” new classes for a particular course. Save the block in a file called add_new_classes.sql Accept the following IN parameter:
	 Number of new classes required. Set a default value of 1.
	 Course id; For each new class, use “today”as the START_DATE.
	 Period, to specify what days the class meets.
	 Frequency, to specify how often it meets.
	 Instructor id, who is teaching the class(s).
	There are 2 ways you can generate a new CLASS_ID.
	 First use a SELECT to find out what is currently the highest CLASS_ID. Increment this number by 1 for each new class you add. For example: When you run your program, the highest CLASS_ID is 12 and you want to create 3 new classes. Your new CLASS_IDs would be 13, 14, and 15.
	 Create a sequence number that starts with a number higher than the maximum CLASS_ID. Use sequence_name.NEXTVAL in your INSERT statement.

	Part 2: Teacher Tools
	Part 3: School Administrator’s Tools
	2. Create an anonymous block to find the average grade for a class. Save the program in a file called compute_average_grade .sql. Assume the class has used numeric_grades. Accept a CLASS_ID. Return the average grade.
	3. Create an anonymous block to return the number of classes offered for a given course. Save the program in a file called count_classes_per_course.sql.
	4. Create an anonymous block to list all classes offered between a range of dates. Save your program in a file called show_class_offerings.sql. Accept a start date and end date. For each class found, display the CLASS_ID, START_DATE, instructor FIRST_NAME and LAST_NAME, course TITLE and SECTION_CODE.
	Tables used: CLASSES, INSTRUCTORS, COURSES,ENROLLMENTS

