
Oracle Academy
Introduction to Database Programming with PL/SQL

Instructor Resource Guide

INSTRUCTOR NOTES FOR SLIDES

General Note On Infinite Loops:
 When a user executes a PL/SQL block in APEX that contains an infinite loop, there is no way
for the user to stop the loop. It can only be stopped by the DBA who oversees the Academy
database. If the loop does not contain DML statements, closing the browser window and
reopening it will allow the user to continue coding. It the block contains a FOR UPDATE clause,
the affected table(s) will remain locked until released by the DBA, which may take a day or
more.

This is important throughout the practices, but especially in Section 4 where students learn about
looping structures for the first time, and are therefore more likely to make mistakes.

SECTION 4 LESSON 1 – Conditional Control: IF Statements

Slide 1: Conditional Control: IF Statements
No instructor notes for this slide

Slide 2: What Will I Learn?
No instructor notes for this slide

Slide 3: Why Learn It?
No instructor notes for this slide

Slide 4: Tell Me / Show Me – Controlling the Flow of Execution
The IF statement contains alternative courses of action in a block based on conditions. A
condition is an expression with a TRUE or FALSE value that is used to make a decision.

The CASE statement contains alternative courses of action in a block based on one condition.
They are different in that they can be used outside of a PLSQL block in a SQL statement.

LOOPs are control structures that allow iteration of statements. Loop control structures are
repetition statements that enable you to execute statements in a PLSQL block repeatedly. There
are three types of loop control structures supported by PL/SQL, BASIC, FOR, and WHILE.

Slide 5: Tell Me / Show Me – IF Statement
The examples in this and the next slide are written in natural language-like “pseudocode” to help
students to understand the concepts.

Oracle Academy 1 Database Programming with PL/SQL
 Copyright © 2009, Oracle.All rights reserved.

Please note that the ELSIF clause does not have a ‘E’ after the ‘S’. Next note, that there can be
many ELSIF clauses attached to the IF statement. Also, note that a IF statement must be before
any and all ELSIF and ELSE clauses, these clauses cannot be by themselves, ELSIF and ELSE
clauses belong to a IF statement. Finally, please note that a END IF clause must complete each
and every IF statement.

All statements following the THEN clause but before the ELSE, ELSIF, or ENDIF need to be
completed with a semi-colon.

Slide 6: Tell Me / Show Me – CASE Expressions
No instructor notes for this slide

Slide 7: Tell Me / Show Me – LOOP Control Structures
No instructor notes for this slide

Slide 8: Tell Me / Show Me – IF Statements
No instructor notes for this slide

Slide 9: Tell Me / Show Me – IF Statements (continued)
No instructor notes for this slide

Slide 10: Tell Me / Show Me – IF Statements (continued)
ELSIF and ELSE are optional in an IF statement. You can have any number of ELSIF keywords
but only one ELSE keyword in your IF statement. END IF marks the end of an IF statement and
must be terminated by a semicolon.

Point out that ELSIF (not ELSEIF!) is one word but END IF; is two words.

Slide 11: Tell Me / Show Me – IF Statements (continued)
No instructor notes for this slide

Slide 12: Tell Me / Show Me – Simple IF Statements
Another example:

DECLARE
 v_myage NUMBER := 15;
BEGIN
 IF (v_myage < 16) THEN
 DBMS_OUTPUT.PUT_LINE('Cannot drive');
 END IF;
END;

Statement returns TRUE because v_myage is not less than 16. Therefore, the control reaches the
THEN clause and Cannot drive is displayed on the screen.

Oracle Academy 2 Database Programming with PL/SQL
 Copyright © 2009, Oracle.All rights reserved.

Slide 13: Tell Me / Show Me – IF THEN ELSE Statement
Ask students what output would be produced by this block.
Answer: I am not a child.
Another example:
DECLARE
 v_myage NUMBER := 16;
BEGIN
 IF (v_myage < 16) THEN
 DBMS_OUTPUT.PUT_LINE('Cannot drive');
 ELSE
 DBMS_OUTPUT.PUT_LINE('Can drive');
 END IF;
END;
The ELSE clause is added to the code in this example. The condition has changed and, therefore,
it now evaluates to FALSE. Remember that the statements in the THEN clause are only executed
if the condition returns TRUE. In this case, the condition returns FALSE and, therefore, the
control moves to the ELSE statement.

Slide 14: Tell Me / Show Me – IF THEN ELSE Clause
Point out that ELSIF (not ELSEIF!) is one word but END IF is two words.

Another example:
DECLARE
 v_myage NUMBER := 16;
BEGIN
 IF v_myage < 15 THEN
 DBMS_OUTPUT.PUT_LINE(‘Cannot drive’);
 ELSIF v_myage = 15 THEN
 DBMS_OUTPUT.PUT_LINE(‘Can drive with older driver in car');
 ELSIF v_myage = 16 THEN
 DBMS_OUTPUT.PUT_LINE(‘Can drive');
 ELSE
 DBMS_OUTPUT.PUT_LINE(‘Can drive');
 END IF;
END;

In example above, the IF statement now contains multiple ELSIF clauses and an ELSE clause.
Notice that the ELSIF clauses add additional conditions. As with the IF, each ELSIF condition is
followed by a THEN clause, which is executed if the condition returns TRUE.

Slide 15: Tell Me / Show Me – IF THEN ELSE Clause (continued)
The IF clause now contains multiple ELSIF clauses and an ELSE clause. Observe that the ELSIF
clauses can have conditions unlike the ELSE clause. The condition for ELSIF should be
followed by the THEN clause that is executed if the condition of the ELSIF clause returns
TRUE. When you have multiple ELSIF clauses, if the first condition is FALSE or NULL, the
control shifts to the next ELSIF clause.

Oracle Academy 3 Database Programming with PL/SQL
 Copyright © 2009, Oracle.All rights reserved.

Slide 16: Tell Me / Show Me – IF Statement With Multiple Expressions
Ask the students what would happen if you were to change the AND to OR in the IF statement.

Answer: the message would print because v_myfirstname = ‘Christopher’ is TRUE even though
31 < 11 is FALSE. Condition_1 OR condition_2 evaluates to TRUE if at least one of the
individual conditions is true.

Another example:
DECLARE
 v_myage NUMBER := 16;
 v_myfirstname VARCHAR2(12) := 'Christopher';
BEGIN
 IF v_myfirstname ='Christopher' AND v_myage < 16 THEN
 DBMS_OUTPUT.PUT_LINE('Christopher cannot drive');
 END IF;
END;

The condition uses the AND operator and, therefore, it evaluates to TRUE only if both the above
conditions are evaluated as TRUE. There is no limitation on the number of conditional
expressions; however, these statements must be connected with appropriate logical operators.

Slide 17: Tell Me / Show Me – NULL Values in IF Statements
Ask the students what would happen if you were to change

IF v_myage < 11
to
IF v_myage < 11 OR v_myage is NULL;

Answer: “I am a child” would print because the first condition would evaluate to TRUE because
the value of v_myage is NULL.

Slide 18: Tell Me / Show Me – Handling Nulls
No instructor notes for this slide

Slide 19: Tell Me / Show Me – Handling Nulls (continued)
Remind students that NULL means the absence of a value; it does not mean zero. In the slide
example, IF x != y becomes (in pseudocode) “If 5 is not equal to something-missing” – this is
not TRUE or FALSE, because “something-missing” cannot be compared with anything else.

Slide 20: Tell Me / Show Me – Handling Nulls (continued)
No instructor notes for this slide

Slide 21: Tell Me / Show Me – Guidelines for Using IF Statements
No instructor notes for this slide

Oracle Academy 4 Database Programming with PL/SQL
 Copyright © 2009, Oracle.All rights reserved.

Slide 22: Tell Me / Show Me – Terminology
IF – Statement that enables PL/SQL to perform actions selectively based on conditions.
Condition – An expression with a TRUE or FALSE value that is used to make a decision.
CASE – An expression that determines a course of action based on conditions and can be used
outside of a PL/SQL block in a SQL statement.
LOOP Control structures – Repetition statements that enable you to execute statements in a
PL/SQL block repeatedly.

Slide 23: Summary
No instructor notes for this slide

Slide 24: Try It / Solve It
No instructor notes for this slide

Oracle Academy 5 Database Programming with PL/SQL
 Copyright © 2009, Oracle.All rights reserved.

SECTION 4 LESSON 2 – Conditional Control: CASE Statements

Slide 1: Conditional Control: CASE Statements
No instructor notes for this slide

Slide 2: What Will I Learn?
No instructor notes for this slide

Slide 3: Why Learn It?
Nearly everything that can be done with CASE can also be done with IF, but CASE statements
and expressions are shorter and easier to read than the equivalent IF statements.

Slide 4: Tell Me / Show Me – Using a CASE Statement
No instructor notes for this slide

Slide 5: Tell Me / Show Me – Using a CASE Statement (continued)
Point out that a CASE statement must end with END CASE; not END;

Slide 6: Tell Me / Show Me – CASE Statements: A Second Example
In this CASE statement, the phrase “WHEN 108” means: when v_mngid is equal to 108. You
can use CASE statements to test for non-equality conditions such as <, >, BETWEEN … AND,
and so on. These are called Searched CASE statements. But they are not much shorter or
simpler than their equivalent IF statements.

Slide 7: Tell Me / Show Me – Using a CASE Expression
No instructor notes for this slide

Slide 8: Tell Me / Show Me – Using a CASE Expression (continued)
Point out that v_out_var := CASE ….. END; is a single PL/SQL statement, ending with END;
(not END CASE;)

Slide 9: Tell Me / Show Me – CASE Expressions
No Instructor notes for this slide

Slide 10: Tell Me / Show Me – CASE Expressions: A Second Example
CASE Expressions: Example
In the example in the slide, the CASE expression uses the value in the v_grade variable as the
expression. The CASE expression returns the value of the v_appraisal variable based on the
value of the v_grade variable.

Ask students what output would be produced if the v_grade variable were initialized to ‘C’
instead of ‘A’.

Oracle Academy 6 Database Programming with PL/SQL
 Copyright © 2009, Oracle.All rights reserved.

Slide 11: Tell Me / Show Me – CASE Expressions: A Third Example
Answer: ‘Same value’ will be displayed, not ‘Middle value’. WHEN v_in_var compares the
variable with itself, and the condition: v_in_var = v_in_var is always TRUE (unless v_in_var is
null).

Slide 12: Tell Me / Show Me – Searched CASE Expressions
Searched CASE expressions are more flexible, allowing non-equality conditions (and compound
conditions) to be tested and different variables to be used in different WHEN clauses.

Slide 13: Tell Me / Show Me – Searched CASE Expressions: An Example
Often we have a choice of using a searched or non-searched CASE expression. The example in
the slide could be written as:
v_appraisal :=
 CASE v_ grade
 WHEN ‘A’ THEN ‘Excellent’
 WHEN ‘B’ THEN ‘Good’
 WHEN ‘C’ THEN ‘Good’
 ELSE ‘No such grade’
 END CASE;

However, searched CASE expressions are more flexible, allowing non-equality conditions (and
compound conditions) to be tested and different variables to be used in different WHEN clauses

Slide 14: Tell Me / Show Me – How are CASE expressions Different from CASE Statements?
CASE expressions are actually functions, which always return exactly one value, just like
PL/SQL stored functions (CREATE OR REPLACE FUNCTION …) which students will learn
later in this course.

Slide 15: Tell Me / Show Me – How are CASE expressions Different from CASE Statements?
(continued)
Point out that a CASE expression only has one terminating semicolon at the END;, while a
CASE statement has a semicolon after each executable statement in a WHEN clause.

Slide 16: Tell Me / Show Me – Logic Tables
You can build a simple Boolean condition by combining number, character, or date expressions
with comparison operators.

You can build a complex Boolean condition by combining simple Boolean conditions with the
logical operators AND, OR, and NOT. The logical operators are used to check the Boolean
variable values and return TRUE, FALSE, or NULL. In the logic tables shown in the slide:

• AND returns TRUE only if both of its operands are TRUE
• OR returns FALSE only if both of its operands are FALSE
• NULL AND TRUE always evaluates to NULL because it is not known whether the

second operand evaluates to TRUE or not

Oracle Academy 7 Database Programming with PL/SQL
 Copyright © 2009, Oracle.All rights reserved.

Note: The negation of NULL (NOT NULL) results in a null value because null values are
indeterminate.

Slide 17: Tell Me / Show Me – Boolean Conditions
The AND logic table can help you evaluate the possibilities for the Boolean condition in the
slide.

Answers
1. TRUE
2. FALSE
3. NULL
4. FALSE

Slide 18: Tell Me / Show Me – Terminology
CASE expression – An expression that selects a result and returns it into a variable.
CASE statement – A block of code that performs actions based on conditional tests.
Logic Tables – Shows the results of all possible combinations of two conditions.

Slide 19: Summary
No instructor notes for this slide

Slide 20: Try It / Solve It
No instructor notes for this slide

Oracle Academy 8 Database Programming with PL/SQL
 Copyright © 2009, Oracle.All rights reserved.

SECTION 4 LESSON 3 – Iterative Control: Basic Loops

Slide 1: Iterative Control: Basic Loops
No instructor notes for this slide

Slide 2: What Will I Learn?
No instructor notes for this slide

Slide 3: Why Learn It?
Students will study FOR loops and WHILE loops in the next lesson.

Slide 4: Tell Me / Show Me –Iterative Control: LOOP Statements
Each loop is structured for a specific purpose. These loops are used to write code to handle all
situations (problems). Loops can repeat one statement, a group of statements, and/or a block.
Loops have a scope and loop variables have a life.

Slide 5: Tell Me / Show Me – Basic Loop
No instructor notes for this slide

Slide 6: Tell Me / Show Me – Basic Loop (continued)
No instructor notes for this slide

Slide 7: Tell Me / Show Me – Basic Loop (continued)
Ask students what would happen if no EXIT statement were included. Answer: the loop would
execute 99 times, inserting 99 rows into the table. The 100th iteration would try to increment the
counter to 100 and cause an error because V_COUNTER is declared as NUMBER(2).

Slide 8: Tell Me / Show Me – Basic Loops: The EXIT Statement
Students may not have seen the POWER function before. Demonstrate it briefly by:

SELECT POWER(3,2), POWER(3,3), POWER(3,4)
FROM dual;

Slide 9: Tell Me / Show Me – Basic Loops: The EXIT Statement
(continued)
You can issue EXIT either as an action within an IF statement or as a stand-alone statement
within the loop.

Slide 10: Tell Me / Show Me – Basic Loops: The EXIT WHEN Statement (continued)

EXIT WHEN v_counter > 10; -- Is logically identical to (but is much neater than):

IF v_counter > 10 THEN
 EXIT;
END IF;

Oracle Academy 9 Database Programming with PL/SQL
 Copyright © 2009, Oracle.All rights reserved.

The EXIT WHEN statement is a conditional expression that gives clear direction(s) to the
code. It is the better way to check for the iterations to continue or the end of the iterations.

Slide 11: Tell Me / Show Me – Terminology
Basic (Infinite) Loop – Encloses a sequence of statements between the keywords LOOP and
END LOOP and must execute at least once.
EXIT – Statement to terminate a loop.

Slide 12: Summary
No instructor notes for this slide

Slide 13: Try It / Solve It
No instructor notes for this slide

Oracle Academy 10 Database Programming with PL/SQL
 Copyright © 2009, Oracle.All rights reserved.

SECTION 4 LESSON 4 – Iterative Control: WHILE and FOR Loops

Slide 1: Iterative Control: WHILE and FOR Loops
No instructor notes for this slide

Slide 2: What Will I Learn?
No instructor notes for this slide

Slide 3: Why Learn It?
No instructor notes for this slide

Slide 4: Tell Me / Show Me – WHILE Loops
The WHILE loop is a conditional loop that continues to execute as long as the condition in the
loop control evaluates to TRUE. Since the WHILE loop depends on a condition and is not fixed,
use the WHILE loop when you don’t know in advance the number of times a loop must execute.

Slide 5: Tell Me / Show Me – WHILE Loops (continued)
In some programming languages (but not PL/SQL) you can also code an UNTIL loop, which
continues to loop until the controlling condition becomes TRUE. This is not needed in PL/SQL
because we can simply code:
WHILE NOT condition LOOP
 …
END LOOP

Slide 6: Tell Me / Show Me – WHILE Loops (continued)
No instructor notes for this slide

Slide 7: Tell Me / Show Me – WHILE Loops (continued)
No instructor notes for this slide

Slide 8: Tell Me / Show Me – FOR Loops
No instructor notes for this slide

Slide 9: Tell Me / Show Me – FOR Loops (continued)
For example:

1. FOR i IN 1..5 LOOP …; -- successive values 1,2,3,4,5
2. FOR i IN REVERSE 1..5 LOOP …; -- successive values 5,4,3,2,1
3. FOR i IN REVERSE 5..1 LOOP …; -- will cause an error.

Slide 10: Tell Me / Show Me – FOR Loops (continued)
No instructor notes for this slide

Oracle Academy 11 Database Programming with PL/SQL
 Copyright © 2009, Oracle.All rights reserved.

Slide 11: Tell Me / Show Me – FOR Loops (continued)
Students may ask: what if we want to increase (or decrease) the loop counter by 2 each time
instead of by 1, giving successive values 2,4,6 instead of 1,2,3 ?

We can do this by declaring a second variable explicitly and setting it to twice the loop counter.
For example:

DECLARE
 v_counter INTEGER;
 …
BEGIN
 FOR i IN 1..3 LOOP
 v_counter := i * 2;
 …
 END LOOP;

Slide 12: Tell Me / Show Me – FOR Loops: Guidelines
The scope of the counter is automatically restricted to the loop alone.

A FOR loop is used within the code when the beginning and ending value of the loop is known.
FOR loops are the staple loop of programming. It is easy to use and understand.

Slide 13: Tell Me / Show Me – FOR Loops
No instructor notes for this slide

Slide 14: Tell Me / Show Me – Guidelines For Using Loops
A basic loop allows the execution of its statement at least once, even if the condition is already
met upon entering the loop. Without the EXIT statement, the loop would be infinite.

You can use the WHILE loop to repeat a sequence of statements until the controlling condition is
no longer TRUE. The condition is evaluated at the start of each iteration. The loop terminates
when the condition is FALSE. If the condition is FALSE at the start of the loop, then no further
iterations are performed.

FOR loops have a control statement before the LOOP keyword to determine the number of
iterations that PL/SQL performs. Use a FOR loop if the number of iterations is predetermined.

Note: All loops allow the use an EXIT WHEN condition allowing the loop to terminate before
the WHILE condition is false or the upper bound of the FOR loop is reached

Remember that all the variables used within the loop blocks have a scope. The specific loop
needed is determined by the problem being solved.

Slide 15: Tell Me / Show Me – Terminology
WHILE Loop – Repeats a sequence of statements until the controlling condition is no longer
TRUE.
FOR Loop – Repeats a sequence of statements until a set number of iterations are fulfilled.

Oracle Academy 12 Database Programming with PL/SQL
 Copyright © 2009, Oracle.All rights reserved.

Slide 16: Summary
No instructor notes for this slide

Slide 17: Try It / Solve It
No instructor notes for this slide

Oracle Academy 13 Database Programming with PL/SQL
 Copyright © 2009, Oracle.All rights reserved.

SECTION 4 LESSON 5 – Iterative Control: Nested Loops

Slide 1: Iterative Control: Nested Loops
No instructor notes for this slide

Slide 2: What Will I Learn?
No instructor notes for this slide

Slide 3: Why Learn It?
No instructor notes for this slide

Slide 4: Tell Me / Show Me – Nested Loops
Consider entering and executing this block so that students can clearly see the successive
iterations.

The slide example shows a FOR loop nested inside another FOR loop. But (for example) we
could nest a WHILE loop inside a FOR loop; or a FOR loop inside a basic loop; or …. All
combinations are allowed.

Slide 5: Tell Me / Show Me – Nested Loops (continued)
Explain that when V_INNER_DONE = ‘YES’, PL/SQL exits the inner loop but the outer loop
continues executing. What if we want to exit the outer loop (ie both loops) while still within the
inner loop?

Slide 6: Tell Me / Show Me –Loop Labels
Loop labels can help to improve readability even when they are not needed. But they are needed
only if we want to exit an outer loop from within an inner loop.

Slide 7: Tell Me / Show Me – Loops Labels (continued)
No instructor notes for this slide

Slide 8: Tell Me / Show Me – Loop Labels (continued)
The loop labels are not strictly needed in this example, but they do make the code more readable.

Slide 9: Tell Me / Show Me – Nested Loops and Labels
In this example, the outer_loop label is necessary because we reference it in an EXIT statement
within the inner loop. The inner_loop label is not strictly necessary. The label names are
included after the END LOOP statements for clarity.

Slide 10: Summary
No instructor notes for this slide

Slide 11: Try It / Solve It
No instructor notes for this slide

Oracle Academy 14 Database Programming with PL/SQL
 Copyright © 2009, Oracle.All rights reserved.

PRACTICE SOLUTIONS

SECTION 1 LESSON 1 – Conditional Control: IF Statements .

Terminology
1. __IF____________________ Statement that enables PL/SQL to perform actions selectively

based on conditions.
2. __LOOP________________ Control structures – Repetition statements that enable you to

execute statements in a PL/SQL block repeatedly.
3. __Condition_____________ An expression with a TRUE or FALSE value that is used to

make a decision.
4. __CASE__________________ An expression that determines a course of action based on

conditions and can be used outside a PL/SQL block in a SQL statement.

Try It/Solve It
1. What is the purpose of a conditional control structure in PL/SQL?

A conditional control structure is used to change the logical flow of statements within a
PL/SQL block.

2. List the three categories of control structures in PL/SQL.

IF statements
CASE expressions
LOOP control structures

3. List the keywords that can be part of an IF statement.

IF, THEN, ELSE, ELSIF, and END IF

4. List the keywords that are a required part of an IF statement.

IF, THEN, and END IF

Oracle Academy 15 Database Programming with PL/SQL
 Copyright © 2009, Oracle.All rights reserved.

5. Write a PL/SQL block to find the population of a given country in the wf_countries table.
Display a message indicating whether the population is greater than or less than 1 billion
(1,000,000,000). Test your block twice using India (country_id=91) and United Kingdom
(country_id=44). India’s population should be greater than 1 billion, while United
Kingdom’s should be less than 1 billion.

DECLARE
 v_country_id wf_countries.country_id%TYPE := 91; -- or 44
 v_population wf_countries.population%TYPE;
BEGIN
 SELECT population INTO v_population
 FROM wf_countries
 WHERE country_id = v_country_id;
 IF v_population > 1000000000
 THEN
 DBMS_OUTPUT.PUT_LINE('Greater than 1 billion');
 ELSE
 DBMS_OUTPUT.PUT_LINE('Less than 1 billion');
 END IF;
END;

6. Modify the code from the previous exercise so that it handles all the following cases:

A. Population is greater than 1 billion.
B. Population is greater than 0.
C. Population is 0.
D. Population is null. (Display: No data for this country.)

Run your script using the following countries:
China (country_id=86): Population is greater than 1 billion.
United Kingdom (country_id=44): Population is greater than 0.
Antarctica (country_id=672): Population is 0.
Europa Island (country_id=15): There is no data for this country.

Oracle Academy 16 Database Programming with PL/SQL
 Copyright © 2009, Oracle.All rights reserved.

DECLARE
 v_country_id wf_countries.country_id%TYPE
 := <Enter various values.>;
 v_population wf_countries.population%TYPE;
BEGIN
 SELECT population INTO v_population
 FROM wf_countries
 WHERE country_id = v_country_id;
 IF v_population > 1000000000
 THEN
 DBMS_OUTPUT.PUT_LINE('Greater than 1 billion');
 ELSIF v_population > 0
 THEN
 DBMS_OUTPUT.PUT_LINE('Greater than 0');
 ELSIF v_population = 0
 THEN
 DBMS_OUTPUT.PUT_LINE('Population is 0');
 ELSIF v_population IS NULL
 THEN
 DBMS_OUTPUT.PUT_LINE('No data for this country');
 END IF;
END;

7. Examine the following code:

DECLARE
 v_country_id wf_countries.country_name%TYPE := <a value>;
 v_ind_date wf_countries.date_of_independence%TYPE;
 v_natl_holiday wf_countries.national_holiday_date%TYPE;
BEGIN
 SELECT date_of_independence, national_holiday_date
 INTO v_ind_date, v_natl_holiday
 FROM wf_countries
 WHERE country_id=v_country_id;
 IF v_ind_date IS NOT NULL THEN
 DBMS_OUTPUT.PUT_LINE('A');
 ELSIF v_natl_holiday IS NOT NULL THEN
 DBMS_OUTPUT.PUT_LINE('B');
 ELSIF v_natl_holiday IS NULL AND v_ind_date IS NULL THEN
 DBMS_OUTPUT.PUT_LINE('C');
 END IF;
END;

A. What would print if the country has an independence date equaling NULL and a national

holiday date equaling NULL?

C

Oracle Academy 17 Database Programming with PL/SQL
 Copyright © 2009, Oracle.All rights reserved.

B. What would print if the country has an independence date equaling NULL and a national

holiday date containing a value?

B

C. What would print if the country has an independence date equaling a value and a national

holiday date equaling NULL?

A

D. Run a SQL script against the WF_COUNTRIES table to determine whether the following

countries have independence dates or national holiday dates, or both.

Country Country_ID Independence
Date? Y/N

National
Holiday
Date? Y/N

Output should
be

United States 1 4-Jul-1776 4-Jul A
Iraq 964 28-Jun-2004 A
Antarctica 672 C
Spain 34 12-Oct B

SELECT country_name, country_id, date_of_independence,
 national_holiday_date
 FROM wf_countries
 WHERE country_id IN (1,964,672,34);

E. Finally, run the above PL/SQL code using each of the above country ids as input. Check

whether your output answers are correct.

8. Examine the following code. What output do you think it will produce?

DECLARE
 v_num1 NUMBER(3) := 123;
 v_num2 NUMBER;
BEGIN
 IF v_num1 <> v_num2 THEN
 DBMS_OUTPUT.PUT_LINE('The two numbers are not equal');
 ELSE
 DBMS_OUTPUT.PUT_LINE('The two numbers are equal');
 END IF;
END;

Enter and run the script to check if your answer was correct.

Oracle Academy 18 Database Programming with PL/SQL
 Copyright © 2009, Oracle.All rights reserved.

Many students will opt for “The two numbers are not equal” because v_num2 is not equal
to 123, in fact it is NULL. But comparing a NULL with anything always yields NULL,
therefore the condition v_num1 <> v_num2 is not TRUE.

Extension Exercise
1. Write a PL/SQL block to accept a year and check whether it is a leap year. For example, if

the year entered is 1990, the output should be “1990 is not a leap year.”

Hint: The year should be exactly divisible by 4 but not divisible by 100, or it should be
divisible by 400.

Test your solution with the following years:

1990 Not a leap year
2000 Leap year
1996 Leap year
1900 Not a leap year
1992 Leap year
1884 Leap year

DECLARE
 v_year NUMBER(4) := <enter a year>;
 v_remainder1 NUMBER(5,2);
 v_remainder2 NUMBER(5,2);
 v_remainder3 NUMBER(5,2);
BEGIN
 v_remainder1 := MOD(v_year,4);
 v_remainder2 := MOD(v_year,100);
 v_remainder3 := MOD(v_year,400);
 IF ((v_remainder1 = 0 AND v_remainder2 <> 0)
 OR v_remainder3 = 0) THEN
 DBMS_OUTPUT.PUT_LINE(v_year || ' is a leap year');
 ELSE
 DBMS_OUTPUT.PUT_LINE(v_year || ' is not a leap year');
 END IF;
END;

Oracle Academy 19 Database Programming with PL/SQL
 Copyright © 2009, Oracle.All rights reserved.

SECTION 4 LESSON 2 – Conditional Control: Case Statements

Terminology
1. __CASE expression________ An expression that selects a result and returns it into a

variable.
2. __Logic Tables____________ Shows the results of all possible combinations of two

conditions.
3. __CASE statement_________ A block of code that performs actions based on conditional

tests.

Try It/Solve It
1. Write a PL/SQL block:

A. To find the number of airports from the wf_countries table for a supplied country_name.
Based on this number, display a customized message as follows:

Airports Message
0–100 There are 100 or fewer airports.
101–1,000 There are between 101 and 1,000 airports.
1001–1,0000 There are between 1,001 and 10,000 airports.
> 10,000 There are more than 10,000 airports.
No value in database The number of airports is not available for this

country.

Use a CASE statement. You can use the following code to get started:

DECLARE
 v_country_name wf_countries.country_name%TYPE :=
 '<country_name>’;
 v_airports wf_countries.airports%TYPE;
BEGIN
 SELECT airports INTO v_airports
 FROM wf_countries
 WHERE country_name = v_country_name;

 CASE
 WHEN ...
 END CASE;

END;

Oracle Academy 20 Database Programming with PL/SQL
 Copyright © 2009, Oracle.All rights reserved.

DECLARE
 v_country_name wf_countries.country_name%TYPE :=
 '<country_name>';
 v_airports wf_countries.airports%TYPE;
BEGIN
 SELECT airports INTO v_airports
 FROM wf_countries
 WHERE country_name = v_country_name;

 CASE
 WHEN v_airports < 100 THEN
 DBMS_OUTPUT.PUT_LINE ('There 100 or fewer airports');
 WHEN v_airports < 1001 THEN
 DBMS_OUTPUT.PUT_LINE ('There are between 101 and 1000
 airports');
 WHEN v_airports < 10001 THEN
 DBMS_OUTPUT.PUT_LINE ('There are between 1001 and 10000
 airports');
 WHEN v_airports > 10000 THEN
 DBMS_OUTPUT.PUT_LINE ('There are more than 10000
 airports');
 ELSE
 DBMS_OUTPUT.PUT_LINE ('The number of airports is not
 listed for this country. ');
 END CASE;

END;

B. Test your code against the following data:

 No

value
0–100 101–1,000 1,001–10,000 > 10,000

Canada X
Malaysia X
United States of America X
Romania X
Japan X
Mongolia X
Navassa Island X

Oracle Academy 21 Database Programming with PL/SQL
 Copyright © 2009, Oracle.All rights reserved.

2. Write a PL/SQL block:

A. To find the amount of coastline for a supplied country name. Use the wf_countries table.
Based on the amount of coastline for the country, display a customized message as
follows:

Length of Coastline Message
0 no coastline
<1000 a small coastline
<10000 a mid-range coastline
All other values a large coastline

Use a CASE expression. Use the following code to get started:

DECLARE
 v_country_name wf_countries.country_name%TYPE :=
 '<country name>';
 v_coastline wf_countries.coastline %TYPE;
 v_coastline_description VARCHAR2(50);

BEGIN
 SELECT coastline INTO v_coastline
 FROM wf_countries
 WHERE country_name = v_country_name;

 v_coastline_description :=
 CASE ...
 END;

 DBMS_OUTPUT.PUT_LINE('Country ' || v_country_name ||
 ' has ' || v_coastline_description);
END;

Oracle Academy 22 Database Programming with PL/SQL
 Copyright © 2009, Oracle.All rights reserved.

DECLARE
 v_country_name wf_countries.country_name%TYPE :=
 '<country name>';
 v_coastline wf_countries.coastline %TYPE;
 v_coastline_description VARCHAR2(50);

BEGIN
 SELECT coastline INTO v_coastline
 FROM wf_countries
 WHERE country_name = v_country_name;

 v_coastline_description :=
 CASE
 WHEN v_coastline = 0
 THEN 'no coastline'
 WHEN v_coastline < 1000
 THEN 'a small coastline'
 WHEN v_coastline < 10000 THEN
 'a mid-range coastline'
 ELSE
 'a large coastline'
 END;

 DBMS_OUTPUT.PUT_LINE('Country ' || v_country_name ||
 ' has ' || v_coastline_description);
END;

B. Test your code against the following data:

 No
coastline

Small
coastline

Mid-range
coastline

Large coastline

Canada X
Jamaica X
Mongolia X
Ukraine X
Japan X
Grenada X

Oracle Academy 23 Database Programming with PL/SQL
 Copyright © 2009, Oracle.All rights reserved.

3. Use a CASE statement:

A. Write a PL/SQL block to select the number of countries using a supplied currency name.
If the number of countries is greater than 20, display “More than 20 ccountries”. If the
number of countries is between 10 and 20, display “Between 10 and 20 countries”. If the
number of countries is less than 10, display “Fewer than 10 countries”. Use a CASE
statement.

B. Test your code using the following data:

 Fewer than 10
countries

Between 10 and 20
countries

More than 20 countries

US Dollar X
Swiss franc X
Euro X

DECLARE
 v_currency_name wf_currencies.currency_name%TYPE :=
 '<currency name>';
 v_no_of_countries NUMBER(3);

BEGIN
 SELECT currency_name, count(*)
 INTO v_currency_name, v_no_of_countries
 FROM wf_countries c, wf_currencies cu
 WHERE c.currency_code = cu.currency_code
 AND currency_name = v_currency_name
 GROUP BY currency_name;

 CASE
 WHEN v_no_of_countries > 20
 THEN DBMS_OUTPUT.PUT_LINE ('More than 20 countries');
 WHEN v_no_of_countries BETWEEN 10 AND 20
 THEN DBMS_OUTPUT.PUT_LINE ('Between 10 and 20 countries');
 WHEN v_no_of_countries < 10
 THEN DBMS_OUTPUT.PUT_LINE ('Fewer than 10 countries');
 END CASE;

END;

Oracle Academy 24 Database Programming with PL/SQL
 Copyright © 2009, Oracle.All rights reserved.

4. Examine the following code.

A. What do you think the output will be? Test your theory by running the code in
Application Express.

DECLARE
 x BOOLEAN := FALSE;
 y BOOLEAN;
 v_color VARCHAR(20) := 'Red';
BEGIN
 IF (x OR y)

THEN v_color := 'White';
 ELSE
 v_color := 'Black';
 END IF;
 DBMS_OUTPUT.PUT_LINE(v_color);
END;

Black

B. Change the declarations to x and y as follows. What do you think the output will be? Test

your theory by running the code again.

 x BOOLEAN ;
 y BOOLEAN ;

Black

C. Change the declarations to x and y as follows. What do you think the output will be? Test

your theory by running the code again.

 x BOOLEAN := TRUE;
 y BOOLEAN := TRUE;

White

D. Experiment with changing the OR condition to AND.

Oracle Academy 25 Database Programming with PL/SQL
 Copyright © 2009, Oracle.All rights reserved.

SECTION 4 LESSON 3 – Iterative Control: Basic Loops

Terminology
1. __Basic Loop______ Encloses a sequence of statements between the keywords LOOP and

END LOOP and must execute at least once.
2. __EXIT___________________ Statement to terminate a loop.

Try It/Solve It
1. What purpose does a loop serve in PL/SQL?

A loop is used to execute statements repeatedly.

2. List the types of loops in PL/SQL.

PL/SQL has basic loops, FOR loops, and WHILE loops.

3. What statement is used to explicitly end a loop?

The EXIT statement

4. Write a PL/SQL block to display the country_id and country_name values from the

WF_COUNTRIES table for country_id whose values range from 1 through 3. Use a basic
loop. Increment a variable from 1 through 3. Use an IF statement to test your variable and
EXIT the loop after you have displayed the first 3 countries.

DECLARE
 v_country_id wf_countries.country_id%TYPE := 1;
 v_country_name wf_countries. country_name%TYPE;

BEGIN
 LOOP
 SELECT country_name INTO v_country_name
 FROM wf_countries
 WHERE country_id = v_country_id;
 DBMS_OUTPUT.PUT_LINE ('Country ID '|| v_country_id||' is '||
 v_country_name);
 v_country_id := v_country_id + 1;
 IF v_country_id > 3
 THEN EXIT;
 END IF;
 END LOOP;
END;

Oracle Academy 26 Database Programming with PL/SQL
 Copyright © 2009, Oracle.All rights reserved.

5. Modify your solution to question 4 above, replacing the IF statement with an EXIT....WHEN
statement.

DECLARE
 v_country_id wf_countries.country_id%TYPE := 1;
 v_country_name wf_countries. country_name%TYPE;

BEGIN
 LOOP
 SELECT country_name INTO v_country_name
 FROM wf_countries
 WHERE country_id = v_country_id;
 DBMS_OUTPUT.PUT_LINE ('Country ID '|| v_country_id||' is '||
 v_country_name);
 v_country_id := v_country_id + 1;
 EXIT WHEN v_country_id > 3;
 END LOOP;
END;

6. Create a Messages Table and insert several rows into it:

A. To create the messages table.

DROP TABLE messages;
CREATE TABLE messages (results NUMBER(2));

B. Write a PL/SQL block to insert numbers into the messages table. Insert the numbers 1

through 10, excluding 6 and 8.

DECLARE
 v_number NUMBER(2) := 1;
BEGIN
 LOOP
 IF v_number = 6 OR v_number = 8 THEN
 NULL;
 ELSE
 INSERT INTO messages(results)
 VALUES (v_number);
 END IF;
 v_number := v_number + 1;
 EXIT WHEN v_number > 10;
 END LOOP;
 COMMIT;
END;

Oracle Academy 27 Database Programming with PL/SQL
 Copyright © 2009, Oracle.All rights reserved.

C. Execute a SELECT statement to verify that your PL/SQL block worked.

SELECT * FROM messages;

Oracle Academy 28 Database Programming with PL/SQL
 Copyright © 2009, Oracle.All rights reserved.

SECTION 4 LESSON 4 – Iterative Control: WHILE and FOR Loops

Terminology
1. ___WHILE Loop____________ Repeats a sequence of statements until the controlling

condition is no longer TRUE.
2. ___FOR Loop______________ Repeats a sequence of statements until a set number of

iterations have been completed.

Try It/Solve It
1. Write a PL/SQL block to display the country_id and country_name values from the

WF_COUNTRIES table for country_id whose values range from 51 through 55. Use a
WHILE loop. Increment a variable from 51 through 55. Test your variable to see when it
reaches 55. EXIT the loop after you have displayed the 5 countries.

DECLARE
 v_country_id wf_countries.country_id%TYPE := 51;
 v_country_name wf_countries. country_name%TYPE;

BEGIN
 WHILE v_country_id <= 55 LOOP
 SELECT country_name INTO v_country_name
 FROM wf_countries
 WHERE country_id = v_country_id;
 DBMS_OUTPUT.PUT_LINE ('Country ID ' || v_country_id ||
 ' is ' || v_country_name);
 v_country_id := v_country_id + 1;
 END LOOP;
END;

2. Write a PL/SQL block to display the country_id and country_name values from the

WF_COUNTRIES table for country_id whose values range from 51 through 55 in the
reverse order. Use a FOR loop.

DECLARE
 v_country_name wf_countries.country_name%TYPE;

BEGIN
 FOR loop_counter IN REVERSE 51..55 LOOP
 SELECT country_name INTO v_country_name
 FROM wf_countries
 WHERE country_id = loop_counter;
 DBMS_OUTPUT.PUT_LINE ('Country ID ' || loop_counter ||
 ' is ' || v_country_name);
 END LOOP;
END;

Oracle Academy 29 Database Programming with PL/SQL
 Copyright © 2009, Oracle.All rights reserved.

3. new_emp table

A. Execute the following statements to build a new_emp table.

DROP TABLE new_emps;
CREATE TABLE new_emps AS SELECT * FROM employees;
ALTER TABLE new_emps ADD stars VARCHAR2(50);

B. Create a PL/SQL block that inserts an asterisk in the stars column for every whole $1000

of an employee’s salary. For example, if an employee has salary of $7800, the string
“*******” would be inserted. Use the following code as a starting point.

DECLARE
 v_empno new_emps.employee_id%TYPE := <employee_id>;
 v_asterisk new_emps.stars%TYPE := NULL;
 v_sal_in_thousands new_emps.salary%TYPE;
BEGIN
 SELECT NVL(TRUNC(salary/1000), 0) INTO v_sal_in_thousands
 FROM new_emps WHERE employee_id = v_empno;

 FOR …

 UPDATE new_emps SET stars = v_asterisk
 WHERE employee_id = v_empno;

END;

DECLARE
 v_empno new_emps.employee_id%TYPE := <employee_id>;
 v_asterisk new_emps.stars%TYPE := NULL;
 v_sal_in_thousands new_emps.salary%TYPE;
BEGIN
 SELECT NVL(TRUNC(salary/1000), 0) INTO v_sal_in_thousands
 FROM new_emps WHERE employee_id = v_empno;
 FOR i IN 1..v_sal_in_thousands LOOP
 v_asterisk := v_asterisk || '*';
 END LOOP;
 UPDATE new_emps SET stars = v_asterisk
 WHERE employee_id = v_empno;
 COMMIT;
END;

Oracle Academy 30 Database Programming with PL/SQL
 Copyright © 2009, Oracle.All rights reserved.

C. Test your code using employee_ids 124 and 142.

D. Execute a SQL statement to check your results.

SELECT employee_id,salary, stars
 FROM new_emps
 WHERE employee_id IN (124,142);

Oracle Academy 31 Database Programming with PL/SQL
 Copyright © 2009, Oracle.All rights reserved.

SECTION 4 LESSON 5 – Iterative Control: Nested Loops

Terminology
No new vocabulary for this lesson.

Try It/Solve It
1. Write a PL/SQL block to produce a list of available vehicle license plate numbers. These

numbers must be in the following format: NN-MMM, where NN is between 60 and 65, and
MMM is between 100 and 110. Use nested FOR loops. The outer loop should choose
numbers between 60 and 65. The inner loop should choose numbers between 100 and 110,
and concatenate the two numbers together.

DECLARE
 v_license_number CHAR(6);

BEGIN
 DBMS_OUTPUT.PUT_LINE ('Available License Tags are: ');
 FOR first_number_counter IN 60..65 LOOP
 FOR second_number_counter IN 100..110 LOOP

 v_license_number := first_number_counter ||'-'||
 second_number_counter;

 DBMS_OUTPUT.PUT_LINE (v_license_number);
 END LOOP;
 END LOOP;
END;

Oracle Academy 32 Database Programming with PL/SQL
 Copyright © 2009, Oracle.All rights reserved.

Oracle Academy 33 Database Programming with PL/SQL
 Copyright © 2009, Oracle.All rights reserved.

2. Modify your block from question 1 to calculate the sum of the two numbers on each iteration
of the inner loop (for example, 62-107 sums to 169), and exit from the OUTER loop if the
sum of the two numbers is greater than 172. Use loop labels. Test your modified code.

DECLARE
 v_license_number CHAR(6);

BEGIN
 DBMS_OUTPUT.PUT_LINE ('Available License Tags are: ');
 <<outer_loop>>
 FOR first_number_counter IN 60..65 LOOP
 <<inner_loop>>
 FOR second_number_counter IN 100..110 LOOP

 v_license_number := first_number_counter ||'-'||
 second_number_counter;

 DBMS_OUTPUT.PUT_LINE (v_license_number);
 EXIT outer_loop WHEN
 first_number_counter + second_number_counter > 172;
 END LOOP inner_loop;
 END LOOP outer_loop;
END;

The last number outputted should be: 63-110.

	SECTION 4 LESSON 1 – Conditional Control: IF Statements
	Slide 1: Conditional Control: IF Statements
	Slide 2: What Will I Learn?
	Slide 3: Why Learn It?
	Slide 4: Tell Me / Show Me – Controlling the Flow of Execution
	Slide 5: Tell Me / Show Me – IF Statement
	Slide 6: Tell Me / Show Me – CASE Expressions
	Slide 7: Tell Me / Show Me – LOOP Control Structures
	Slide 8: Tell Me / Show Me – IF Statements
	Slide 9: Tell Me / Show Me – IF Statements (continued)
	Slide 10: Tell Me / Show Me – IF Statements (continued)
	Slide 11: Tell Me / Show Me – IF Statements (continued)
	Slide 12: Tell Me / Show Me – Simple IF Statements
	Slide 13: Tell Me / Show Me – IF THEN ELSE Statement
	Slide 14: Tell Me / Show Me – IF THEN ELSE Clause
	Slide 15: Tell Me / Show Me – IF THEN ELSE Clause (continued)
	Slide 16: Tell Me / Show Me – IF Statement With Multiple Expressions
	Slide 17: Tell Me / Show Me – NULL Values in IF Statements
	Slide 18: Tell Me / Show Me – Handling Nulls
	Slide 19: Tell Me / Show Me – Handling Nulls (continued)
	Slide 20: Tell Me / Show Me – Handling Nulls (continued)
	Slide 21: Tell Me / Show Me – Guidelines for Using IF Statements
	Slide 22: Tell Me / Show Me – Terminology
	Slide 23: Summary
	Slide 24: Try It / Solve It

	SECTION 4 LESSON 2 – Conditional Control: CASE Statements
	Slide 1: Conditional Control: CASE Statements
	Slide 2: What Will I Learn?
	Slide 3: Why Learn It?
	Slide 4: Tell Me / Show Me – Using a CASE Statement
	Slide 5: Tell Me / Show Me – Using a CASE Statement (continued)
	Slide 6: Tell Me / Show Me – CASE Statements: A Second Example
	Slide 7: Tell Me / Show Me – Using a CASE Expression
	Slide 8: Tell Me / Show Me – Using a CASE Expression (continued)
	Slide 9: Tell Me / Show Me – CASE Expressions
	Slide 10: Tell Me / Show Me – CASE Expressions: A Second Example
	Slide 11: Tell Me / Show Me – CASE Expressions: A Third Example
	Slide 12: Tell Me / Show Me – Searched CASE Expressions
	Slide 13: Tell Me / Show Me – Searched CASE Expressions: An Example
	Slide 14: Tell Me / Show Me – How are CASE expressions Different from CASE Statements?
	Slide 15: Tell Me / Show Me – How are CASE expressions Different from CASE Statements? (continued)
	Slide 16: Tell Me / Show Me – Logic Tables
	Slide 17: Tell Me / Show Me – Boolean Conditions
	Slide 18: Tell Me / Show Me – Terminology
	Slide 19: Summary
	Slide 20: Try It / Solve It

	SECTION 4 LESSON 3 – Iterative Control: Basic Loops
	Slide 1: Iterative Control: Basic Loops
	Slide 2: What Will I Learn?
	Slide 3: Why Learn It?
	Slide 4: Tell Me / Show Me –Iterative Control: LOOP Statements
	Slide 5: Tell Me / Show Me – Basic Loop
	Slide 6: Tell Me / Show Me – Basic Loop (continued)
	Slide 7: Tell Me / Show Me – Basic Loop (continued)
	Slide 8: Tell Me / Show Me – Basic Loops: The EXIT Statement
	Slide 9: Tell Me / Show Me – Basic Loops: The EXIT Statement
	Slide 10: Tell Me / Show Me – Basic Loops: The EXIT WHEN Statement (continued)
	Slide 11: Tell Me / Show Me – Terminology
	Slide 12: Summary
	Slide 13: Try It / Solve It

	SECTION 4 LESSON 4 – Iterative Control: WHILE and FOR Loops
	Slide 1: Iterative Control: WHILE and FOR Loops
	Slide 2: What Will I Learn?
	Slide 3: Why Learn It?
	Slide 4: Tell Me / Show Me – WHILE Loops
	Slide 5: Tell Me / Show Me – WHILE Loops (continued)
	Slide 6: Tell Me / Show Me – WHILE Loops (continued)
	Slide 7: Tell Me / Show Me – WHILE Loops (continued)
	Slide 8: Tell Me / Show Me – FOR Loops
	Slide 9: Tell Me / Show Me – FOR Loops (continued)
	Slide 10: Tell Me / Show Me – FOR Loops (continued)
	Slide 11: Tell Me / Show Me – FOR Loops (continued)
	Slide 12: Tell Me / Show Me – FOR Loops: Guidelines
	Slide 13: Tell Me / Show Me – FOR Loops
	Slide 14: Tell Me / Show Me – Guidelines For Using Loops
	Slide 15: Tell Me / Show Me – Terminology
	Slide 16: Summary
	Slide 17: Try It / Solve It

	SECTION 4 LESSON 5 – Iterative Control: Nested Loops
	Slide 1: Iterative Control: Nested Loops
	Slide 2: What Will I Learn?
	Slide 3: Why Learn It?
	Slide 4: Tell Me / Show Me – Nested Loops
	Slide 5: Tell Me / Show Me – Nested Loops (continued)
	Slide 6: Tell Me / Show Me –Loop Labels
	Slide 7: Tell Me / Show Me – Loops Labels (continued)
	Slide 8: Tell Me / Show Me – Loop Labels (continued)
	Slide 9: Tell Me / Show Me – Nested Loops and Labels
	Slide 10: Summary
	Slide 11: Try It / Solve It

	SECTION 1 LESSON 1 – Conditional Control: IF Statements .
	Terminology
	Try It/Solve It
	Extension Exercise

	SECTION 4 LESSON 2 – Conditional Control: Case Statements
	Terminology
	Try It/Solve It
	Message
	Length of Coastline
	Message

	SECTION 4 LESSON 3 – Iterative Control: Basic Loops
	Terminology
	Try It/Solve It

	SECTION 4 LESSON 4 – Iterative Control: WHILE and FOR Loops
	Terminology
	Try It/Solve It

	SECTION 4 LESSON 5 – Iterative Control: Nested Loops
	Terminology
	Try It/Solve It

