
Copyright © 2008, Oracle. All rights reserved.

Writing PL/SQL Executable Statements

2

Writing PL/SQL Executable Statements

Copyright © 2008, Oracle. All rights reserved.

What Will I Learn?
In this lesson, you will learn to:
• Construct accurate variable assignment

statements in PL/SQL
• Construct accurate statements using built-in

SQL functions in PL/SQL
• Differentiate between implicit and explicit

conversions of data types
• Describe when implicit conversions of data

types take place
• List the drawbacks of implicit data type

conversions
• Construct accurate statements using

functions to explicitly convert data types
• Construct statements using operators in

PL/SQL

3

Writing PL/SQL Executable Statements

Copyright © 2008, Oracle. All rights reserved.

Why Learn It?
We’ve introduced variables and identifiers.

Now, you build your knowledge of the
PL/SQL programming language by writing
code to assign variable values. These
values can be literals.

They can also be functions. SQL provides
a number of predefined functions that you
can use in SQL statements. Most of these
functions are also valid in PL/SQL
expressions.

4

Writing PL/SQL Executable Statements

Copyright © 2008, Oracle. All rights reserved.

Tell Me/Show Me
Assigning New Values to Variables
• Character and date literals must be enclosed in single

quotation marks.

• Statements can continue over several lines.

• Numbers can be simple values or scientific notation.

(2E5 meaning 2x10 to the power of 5 = 200,000)

v_name := 'Henderson';
v_start_date := '12-DEC-2005';

v_quote := 'The only thing that we can
know is that we know nothing and that
is the highest flight of human
reason.';

v_my_integer := 100;
v_my_sci_not := 2E5;

5

Writing PL/SQL Executable Statements

Copyright © 2008, Oracle. All rights reserved.

Tell Me/Show Me
SQL Functions in PL/SQL
You are already familiar with functions in SQL statements. For
example:

You can also use these functions in PL/SQL procedural
statements. For example:

DECLARE
v_last_day DATE;

BEGIN
v_last_day := LAST_DAY(SYSDATE);
DBMS_OUTPUT.PUT_LINE(v_last_day);

END;

SELECT country_name, LAST_DAY(date_of_independence)
FROM wf_countries
WHERE date_of_independence IS NOT NULL;

6

Writing PL/SQL Executable Statements

Copyright © 2008, Oracle. All rights reserved.

Tell Me/Show Me
SQL Functions in PL/SQL
• Available in procedural statements:

– Single-row character
– Single-row number
– Date
– Data-type conversion
– Miscellaneous functions

• Not available in procedural statements:
– DECODE
– Group functions

7

Writing PL/SQL Executable Statements

Copyright © 2008, Oracle. All rights reserved.

Tell Me/Show Me
Character Functions

Valid character functions in PL/SQL include:

This is not an exhaustive list. Refer to the Oracle documentation
for the complete list.

ASCII LENGTH RPAD

CHR LOWER RTRIM

CONCAT LPAD SUBSTR

INITCAP LTRIM TRIM

INSTR REPLACE UPPER

8

Writing PL/SQL Executable Statements

Copyright © 2008, Oracle. All rights reserved.

Tell Me/Show Me
Examples of Character Functions
• Get the length of a string:

• Convert the name of the country capitol to upper case:

• Concatenate the first and last names:

v_desc_size INTEGER(5);
v_prod_description VARCHAR2(70):='You can use this
product with your radios for higher frequency';

-- get the length of the string in prod_description
v_desc_size:= LENGTH(v_prod_description);

v_capitol_name:= UPPER(v_capitol_name);

v_emp_name:= v_first_name||' '||v_last_name;

9

Writing PL/SQL Executable Statements

Copyright © 2008, Oracle. All rights reserved.

Tell Me/Show Me
Number Functions

Valid number functions in PL/SQL include:

This is not an exhaustive list. Refer to the Oracle documentation
for the complete list.

ABS EXP ROUND

ACOS LN SIGN

ASIN LOG SIN

ATAN MOD TAN

COS POWER TRUNC

10

Writing PL/SQL Executable Statements

Copyright © 2008, Oracle. All rights reserved.

Tell Me/Show Me
Examples of Number Functions
• Get the sign of a number:

• Round a number to 0 decimal places:

DECLARE
v_my_num BINARY_INTEGER :=-56664;

BEGIN
DBMS_OUTPUT.PUT_LINE(SIGN(v_my_num));

END;

DECLARE
v_median_age NUMBER(6,2);

BEGIN
SELECT median_age INTO v_median_age
FROM wf_countries WHERE country_id=27;

DBMS_OUTPUT.PUT_LINE(ROUND(v_median_age,0));
END;

11

Writing PL/SQL Executable Statements

Copyright © 2008, Oracle. All rights reserved.

Tell Me/Show Me
Date Functions

Valid date functions in PL/SQL include:

This is not an exhaustive list. Refer to the Oracle documentation
for the complete list.

ADD_MONTHS MONTHS_BETWEEN

CURRENT_DATE ROUND

CURRENT_TIMESTAMP SYSDATE

LAST_DAY TRUNC

12

Writing PL/SQL Executable Statements

Copyright © 2008, Oracle. All rights reserved.

Tell Me/Show Me
Examples of Date Functions
• Add months to a date:

• Calculate the number of months between two dates:

DECLARE
v_new_date DATE;
v_num_months NUMBER := 6;

BEGIN
v_new_date := ADD_MONTHS(SYSDATE,v_num_months);
DBMS_OUTPUT.PUT_LINE(v_new_date);

END;

DECLARE
v_no_months PLS_INTEGER:=0;

BEGIN
v_no_months := MONTHS_BETWEEN('31-JAN-06','31-MAY-05');
DBMS_OUTPUT.PUT_LINE(v_no_months);

END;

13

Writing PL/SQL Executable Statements

Copyright © 2008, Oracle. All rights reserved.

Tell Me/Show Me
Data-Type Conversion

In any programming language, converting one data type to
another is a common requirement. PL/SQL can handle such
conversions with scalar data types. Data-type conversions can be
of two types:
• Implicit conversions
• Explicit conversions

14

Writing PL/SQL Executable Statements

Copyright © 2008, Oracle. All rights reserved.

Tell Me/Show Me
Implicit Conversions
In implicit conversions, PL/SQL attempts to convert data types
dynamically if they are mixed in a statement. Implicit conversions
can happen between many types in PL/SQL, as illustrated by the
following chart.

DATE LONG NUMBER PLS_INTEGER VARCHAR2

DATE N/A X X

LONG N/A X

NUMBER X N/A X X

PLS_INTEG

ER

X X N/A X

VARCHAR2 X X X X N/A

15

Writing PL/SQL Executable Statements

Copyright © 2008, Oracle. All rights reserved.

Tell Me/Show Me
Example of Implicit Conversion
Consider the following example:

In this example, the variable v_sal_increase is of type
VARCHAR2. While calculating the total salary, PL/SQL first
converts v_sal_increase to NUMBER and then performs the
operation. The result of the operation is the NUMBER type.

DECLARE
v_salary NUMBER(6):=6000;
v_sal_increase VARCHAR2(5):='1000';
v_total_salary v_salary%TYPE;

BEGIN
v_total_salary:= v_salary + v_sal_increase;
DBMS_OUTPUT.PUT_LINE(v_total_salary);

END;

16

Writing PL/SQL Executable Statements

Copyright © 2008, Oracle. All rights reserved.

Tell Me/Show Me
Drawbacks of Implicit Conversions
At first glance, implicit conversions might seem useful; however,
there are several drawbacks:
• Implicit conversions can be slower.
• When you use implicit conversions, you lose control over

your program because you are making an assumption about
how Oracle handles the data. If Oracle changes the
conversion rules, then your code can be affected.

• Implicit conversion rules depend upon the environment in
which you are running. For example, the date format varies
depending on the language setting and installation type.
Code that uses implicit conversion might not run on a
different server or in a different language.

• Code that uses implicit conversion is harder to read and
understand.

17

Writing PL/SQL Executable Statements

Copyright © 2008, Oracle. All rights reserved.

Tell Me/Show Me
Drawbacks of Implicit Conversions
It is the programmer's responsibility to ensure that values can be
converted. For instance, PL/SQL can convert the CHAR value
'02-JUN-92' to a DATE value, but cannot convert the CHAR
value ‘Yesterday' to a DATE value. Similarly, PL/SQL cannot
convert a VARCHAR2 value containing alphabetic characters to a
NUMBER value.

Valid? Statement

Yes v_new_date DATE := '02-JUN-1992';

No v_new_date DATE := 'Yesterday';

Yes v_my_number NUMBER := '123';

No v_my_number NUMBER := 'abc';

18

Writing PL/SQL Executable Statements

Copyright © 2008, Oracle. All rights reserved.

Tell Me/Show Me
Explicit Conversions
Explicit conversions convert values from one data type to another
by using built-in functions. Examples of conversion functions
include:

TO_NUMBER() ROWIDTONCHAR()

TO_CHAR() HEXTORAW()

TO_CLOB() RAWTOHEX()

CHARTOROWID() RAWTONHEX()

ROWIDTOCHAR() TO_DATE()

19

Writing PL/SQL Executable Statements

Copyright © 2008, Oracle. All rights reserved.

Tell Me/Show Me
Examples of Explicit Conversions

TO_CHAR

TO_DATE

BEGIN
DBMS_OUTPUT.PUT_LINE(TO_CHAR(SYSDATE,'Month YYYY'));

END;

BEGIN
DBMS_OUTPUT.PUT_LINE(TO_DATE('April-1999','Month-YYYY'));

END;

20

Writing PL/SQL Executable Statements

Copyright © 2008, Oracle. All rights reserved.

Tell Me/Show Me
Examples of Explicit Conversions (continued)

TO_NUMBER

DECLARE
v_a VARCHAR2(10) := '-123456';
v_b VARCHAR2(10) := '+987654';
v_c PLS_INTEGER;

BEGIN
v_c := TO_NUMBER(v_a) + TO_NUMBER(v_b);
DBMS_OUTPUT.PUT_LINE(v_c);

END;

21

Writing PL/SQL Executable Statements

Copyright © 2008, Oracle. All rights reserved.

Tell Me/Show Me
Data Type Conversion Example

v_date_of_joining DATE:= '02-Feb-2000';

v_date_of_joining DATE:= 'February 02,2000';

v_date_of_joining DATE:= TO_DATE('February
02,2000','Month DD,YYYY');

1

2

3

22

Writing PL/SQL Executable Statements

Copyright © 2008, Oracle. All rights reserved.

Tell Me/Show Me
Operators in PL/SQL
• Logical
• Arithmetic
• Concatenation
• Parentheses to control the order

of operations

• Exponential operator (**)

The operations within an expression are performed in a particular
order depending on their precedence (priority).

Same as in SQL

23

Writing PL/SQL Executable Statements

Copyright © 2008, Oracle. All rights reserved.

Tell Me/Show Me
Operators in PL/SQL
The following table shows the default order of operations from
high priority to low priority:

Operator Operation

** Exponentiation

+, - Identity, negation

*, / Multiplication, division

+, -, || Addition, subtraction,
concatenation

=, <, >, <=, >=, <>, !=, ~=, ^=, IS NULL,

LIKE, BETWEEN, IN

Comparison

NOT Logical negation

AND Conjunction

OR Inclusion

24

Writing PL/SQL Executable Statements

Copyright © 2008, Oracle. All rights reserved.

Tell Me/Show Me
Operators in PL/SQL
Examples:
• Increment the counter for a loop.

• Set the value of a Boolean flag.

• Validate whether an employee number contains a value.

v_loop_count := v_loop_count + 1;

v_good_sal := v_sal BETWEEN 50000 AND 150000;

v_valid := (v_empno IS NOT NULL);

25

Writing PL/SQL Executable Statements

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me

Terminology
Key terms used in this lesson include:

Implicit conversion
Explicit conversion

26

Writing PL/SQL Executable Statements

Copyright © 2008, Oracle. All rights reserved.

Summary
In this lesson, you have learned how to:
• Construct accurate variable assignment

statements in PL/SQL
• Construct accurate statements using built-in

SQL functions in PL/SQL
• Differentiate between implicit and explicit

conversions of data types
• Describe when implicit conversions of data

types take place
• List the drawbacks of implicit data-type

conversions
• Construct accurate statements using functions

to explicitly convert data types
• Construct statements using operators in

PL/SQL

27

Writing PL/SQL Executable Statements

Copyright © 2008, Oracle. All rights reserved.

Try It/Solve It
The exercises for this lesson cover the following
topics:
• Constructing accurate variable assignment

statements in PL/SQL
• Constructing accurate statements using built-in

SQL functions in PL/SQL
• Differentiating between implicit and explicit

data-type conversions
• Describing when implicit data type conversions

take place
• Listing the drawbacks of implicit data type

conversions
• Constructing accurate statements using

functions to explicitly convert data types
• Constructing statements using operators in

PL/SQL

	Writing PL/SQL Executable Statements
	What Will I Learn?
	Why Learn It?
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me / Show Me
	Summary
	Try It/Solve It

