
Trapping User-Defined Exceptions

Terminology
Directions: Identify the vocabulary word for each definition below:
1. _________________________ A procedure used to return user-defined error messages

from stored subprograms.
2. _________________________ Use this statement to raise a named exception.
3. _________________________ These errors are not automatically raısed by the Oracle

Server, but are defined by the programmer and are specific to the programmer's code.

Try It / Solve It
All the questions in this exercise uses a copy of the employees table. Create this copy by
running the following SQL statement:

CREATE TABLE excep_emps AS SELECT * FROM employees;

1. Create a PL/SQL block that updates the salary of every employee to a new value of 10000 in

a chosen department. Include a user-defined exception handler that handles the condition
where no rows are updated and displays a custom message. Also include an exception
handler that will trap any other possible error condition and display the corresponding
SQLCODE and SQLERRM. Test your code three times, using department_ids 20, 30 and
40.

2. Modify your code from question 2 to handle the condition where no rows are updated using

RAISE_APPLICATION_ERROR procedure in the exception section. Use an error number
of –20202. Test your code again using department_id 40 and check that the –20202 error is
displayed.

3. Modify your code from question 3 to use RAISE_APPLICATION_ERROR in the executable

section instead of the exception section. Test your code again using department_id 40.

Oracle Academy 1 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

Oracle Academy 2 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

4. Before starting this question, disable Autocommit in Application Express.

A. Enter and run the following PL/SQL block using department_id = 40, and explain the
output.

DECLARE
 v_dept_id excep_emps.department_id%TYPE;
 v_count NUMBER;
BEGIN
 v_dept_id := 40;
 SELECT COUNT(*) INTO v_count
 FROM excep_emps
 WHERE department_id = v_dept_id;
 DBMS_OUTPUT.PUT_LINE('There are ' || v_count || ' employees');
 DELETE FROM excep_emps
 WHERE department_id = v_dept_id;
 DBMS_OUTPUT.PUT_LINE(SQL%ROWCOUNT ||
 ' employees were deleted');
 ROLLBACK;
END;

B. Modify your block to include two user_defined exception handlers, one to test whether
SELECT returns a value of 0, the other to test if no rows were DELETEd. Declare the
exceptions and RAISE them explicitly before trapping them in the exception section. Do
NOT use RAISE_APPLICATION_ERROR. Test your modified block using
department_id 40.

C. Modify your block again to use RAISE_APPLICATION_ERROR in the executable

section. Use error numbers –20203 and –20204. Test your modified block using
department_id 40.

	Trapping User-Defined Exceptions
	Terminology
	Try It / Solve It

