
Copyright © 2009, Oracle. All rights reserved.

Trapping User-Defined Exceptions

2

Trapping User-Defined Exceptions

Copyright © 2009, Oracle. All rights reserved.

What Will I Learn?
In this lesson, you will learn to:
• Write PL/SQL code to name a user-defined

exception
• Write PL/SQL code to raise an exception
• Write PL/SQL code to handle a raised

exception
• Write PL/SQL code to use

RAISE_APPLICATION_ERROR

3

Trapping User-Defined Exceptions

Copyright © 2009, Oracle. All rights reserved.

Why Learn It?
Another kind of error handled by PL/SQL is a
user-defined error.

These errors are not automatically raısed by the
Oracle server, but are defined by the
programmer and are specific to the
programmer's code.

An example of a programmer-defined error is
INVALID_MANAGER_ID.

You can define both an error code and an error
message for user-defined errors.

4

Trapping User-Defined Exceptions

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
Exception Types
This lesson discusses user-defined errors.

Exception Description Instructions for Handling
Predefined
Oracle server
error

One of approximately 20
errors that occur most
often in PL/SQL code

You need not declare these
exceptions. They are
predefined by the Oracle
server and are raised
implicitly.

Non-predefined
Oracle server
error

Any other standard
Oracle server error

Declare within the declarative
section and allow the Oracle
server to raise them implicitly.

User-defined
error

A condition that the
developer determines is
abnormal

Declare within the declarative
section, and raise explicitly.

5

Trapping User-Defined Exceptions

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
Trapping User-Defined Exceptions
PL/SQL allows you to define your own exceptions. You define
exceptions depending on the requirements of your application.

Declarative
section

Name the
exception.

Executable
section

Explicitly raise
the exception by
using the RAISE

statement.

Exception-handling
section

Handle the raised
exception.

Raise ReferenceDeclare

Presenter
Presentation Notes
This example highlights how you define, raise, and handle user-defined exceptions. First, you name the user-defined exception within the declarative section. Second, you use the RAISE statement to raise the exception explicitly within the executable section. And third, you reference the declared exception within the corresponding exception-handling routine.

6

Trapping User-Defined Exceptions

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
Trapping User-Defined Exceptions
One example of when you might want to create a user-defined
exception is when you need to address error conditions in the
input data. For example, let's assume that your program prompts
the user for a department number and name so that it can update
the name of the department.

What happens when the user enters an invalid department? The
above code doesn't produce an Oracle error. You need to define
a predefined-user error to raise an error.

DECLARE
v_name VARCHAR2(20):='Accounting';
v_deptno NUMBER := 27;

BEGIN
UPDATE departments

SET department_name = v_name
WHERE department_id = v_deptno;

END;

7

Trapping User-Defined Exceptions

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
Trapping User-Defined Exceptions (continued)
What happens when the user enters an invalid department? The
code as written doesn't produce an Oracle error. You need to
define a predefined-user error to raise an error. You do this by:
1. Declaring the name of the user-defined exception within the
declarative section.

2. Using the RAISE statement to raise the exception explicitly
within the executable section.

3. Referencing the declared exception within the corresponding
exception-handling routine.

e_invalid_department EXCEPTION;

IF SQL%NOTFOUND THEN RAISE e_invalid_department;

EXCEPTION
WHEN e_invalid_department THEN
DBMS_OUTPUT.PUT_LINE('No such department id.');

8

Trapping User-Defined Exceptions

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
Trapping User-Defined Exceptions (continued)
The following is the completed code.

DECLARE
e_invalid_department EXCEPTION;
v_name VARCHAR2(20):='Accounting';
v_deptno NUMBER := 27;

BEGIN
UPDATE departments

SET department_name = v_name
WHERE department_id = v_deptno;

IF SQL%NOTFOUND THEN
RAISE e_invalid_department;

END IF;
COMMIT;

EXCEPTION
WHEN e_invalid_department

THEN DBMS_OUTPUT.PUT_LINE('No such department id.');
ROLLBACK;

END;

1

2

3

9

Trapping User-Defined Exceptions

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
Trapping User-Defined Exceptions (continued)
1. Declare the name of the user-defined exception within the declarative
section. Syntax: exception EXCEPTION; where: exception is the
name of the exception

DECLARE
e_invalid_department EXCEPTION;
v_name VARCHAR2(20):='Accounting';
v_deptno NUMBER := 27;

BEGIN
UPDATE departments

SET department_name = v_name
WHERE department_id = v_deptno;

IF SQL%NOTFOUND THEN
RAISE e_invalid_department;

END IF;
COMMIT;

EXCEPTION
WHEN e_invalid_department

THEN DBMS_OUTPUT.PUT_LINE('No such department id.');
ROLLBACK;

END;

1

2

3

10

Trapping User-Defined Exceptions

Copyright © 2009, Oracle. All rights reserved.

Trapping User-Defined Exceptions (continued)
2. Use the RAISE statement to raise the exception explicitly within the
executable section. Syntax: RAISE exception; where: exception
is the previously declared exception

Tell Me / Show Me

DECLARE
e_invalid_department EXCEPTION;
v_name VARCHAR2(20):='Accounting';
v_deptno NUMBER := 27;

BEGIN
UPDATE departments

SET department_name = v_name
WHERE department_id = v_deptno;

IF SQL%NOTFOUND THEN
RAISE e_invalid_department;

END IF;
COMMIT;

EXCEPTION
WHEN e_invalid_department

THEN DBMS_OUTPUT.PUT_LINE('No such department id.');
ROLLBACK;

END;

1

2

3

11

Trapping User-Defined Exceptions

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
Trapping User-Defined Exceptions (continued)
3. Reference the declared exception within the corresponding
exception-handling routine.

DECLARE
e_invalid_department EXCEPTION;
v_name VARCHAR2(20):='Accounting';
v_deptno NUMBER := 27;

BEGIN
UPDATE departments

SET department_name = v_name
WHERE department_id = v_deptno;

IF SQL%NOTFOUND THEN
RAISE e_invalid_department;

END IF;
COMMIT;

EXCEPTION
WHEN e_invalid_department

THEN DBMS_OUTPUT.PUT_LINE('No such department id.');
ROLLBACK;

END;

1

2

3

12

Trapping User-Defined Exceptions

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
The RAISE Statement
You can use the RAISE statement to raise a named exception.
You can raise:
• An exception of your own (that is, a user-defined exception)

• An Oracle server error

IF v_grand_total=0 THEN
RAISE e_invalid_total;

ELSE
DBMS_OUTPUT.PUT_LINE(v_num_students/v_grand_total);

END IF;

IF v_grand_total=0 THEN
RAISE ZERO_DIVIDE;

ELSE
DBMS_OUTPUT.PUT_LINE(v_num_students/v_grand_total);

END IF;

13

Trapping User-Defined Exceptions

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
The RAISE_APPLICATION_ERROR Procedure
You can use the RAISE_APPLICATION_ERROR procedure to
return user-defined error messages from stored subprograms.

The main advantage of using RAISE_APPLICATION_ERROR
instead of RAISE is that RAISE_APPLICATION_ERROR allows
you to associate your own error number and meaningful
message with the exception. The error numbers must fall
between -20000 and -20999.

Syntax:
RAISE_APPLICATION_ERROR (error_number,

message[, {TRUE | FALSE}]);

Presenter
Presentation Notes
RAISE_APPLICATION_ERROR is used to return user-defined error messages from stored subprograms, like procedures and functions. This procedure makes user-defined errors look and feel like Oracle standard errors, but really they’ve been defined and numbered by the programmer. The main advantage of using RAISE_APPLICATION_ERROR instead of RAISE is that RAISE_APPLICATION_ERROR allows you to associate your own error number and meaningful message with the exception. Error numbers used with RAISE_APPLICATION_ERROR must fall between the numbers negative 20,000 and negative 20,999.

14

Trapping User-Defined Exceptions

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
The RAISE_APPLICATION_ERROR Procedure (continued)

• error_number is a user-specified number for the exception
between –20000 and –20999

• message is the user-specified message for the exception. It is
a character string up to 2,048 bytes long.

• TRUE | FALSE is an optional Boolean parameter. (If TRUE, the
error is placed on the stack of previous errors. If FALSE, the
default, the error replaces all previous errors.)

The number range -20000 to -20999 is reserved by Oracle for
programmer use, and is never used for predefined Oracle Server
errors.

RAISE_APPLICATION_ERROR (error_number,
message[, {TRUE | FALSE}]);

15

Trapping User-Defined Exceptions

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
The RAISE_APPLICATION_ERROR Procedure
(continued)

You can use the RAISE_APPLICATION_ERROR
in two different places:

• Executable section
• Exception section

16

Trapping User-Defined Exceptions

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
RAISE_APPLICATION_ERROR in the Executable Section

When called, the RAISE_APPLICATION_ERROR procedure
displays the error number and message to the user. This process
is consistent with other Oracle server errors.

DECLARE
v_mgr PLS_INTEGER := 123;

BEGIN
DELETE FROM employees

WHERE manager_id = v_mgr;
IF SQL%NOTFOUND THEN

RAISE_APPLICATION_ERROR(-20202,
'This is not a valid manager');

END IF;
END;

17

Trapping User-Defined Exceptions

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
RAISE_APPLICATION_ERROR in the Exception Section

DECLARE
v_mgr PLS_INTEGER := 27;
v_employee_id employees.employee_id%TYPE;

BEGIN
SELECT employee_id into v_employee_id

FROM employees
WHERE manager_id = v_mgr;

DBMS_OUTPUT.PUT_LINE('The employee who works for
manager_id '||v_mgr||' is: '||v_employee_id);

EXCEPTION
WHEN NO_DATA_FOUND THEN

RAISE_APPLICATION_ERROR (-20201,
'This manager has no employees');

WHEN TOO_MANY_ROWS THEN
RAISE_APPLICATION_ERROR (-20202,

'Too many employees were found.');
END;

18

Trapping User-Defined Exceptions

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
Using the RAISE_APPLICATION_ERROR with a User-Defined
Exception

DECLARE
e_name EXCEPTION;
PRAGMA EXCEPTION_INIT (e_name, -20999);
v_last_name employees.last_name%TYPE := 'Silly Name';

BEGIN
DELETE FROM employees WHERE last_name = v_last_name;
IF SQL%ROWCOUNT =0 THEN
RAISE_APPLICATION_ERROR(-20999,'Invalid last name');

ELSE
DBMS_OUTPUT.PUT_LINE(v_last_name||' deleted');

END IF;
EXCEPTION WHEN e_name THEN

DBMS_OUTPUT.PUT_LINE ('Valid last names are: ');
FOR c1 IN (SELECT DISTINCT last_name FROM employees)
LOOP

DBMS_OUTPUT.PUT_LINE(c1.last_name);
END LOOP;

WHEN OTHERS THEN
DBMS_OUTPUT.PUT_LINE('Error deleting from employees');

END;

19

Trapping User-Defined Exceptions

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
Terminology
Key terms used in this lesson include:

User-defined error
RAISE
RAISE_APPLICATION_ERROR

20

Trapping User-Defined Exceptions

Copyright © 2009, Oracle. All rights reserved.

Summary
In this lesson, you learned to:
• Write PL/SQL code to name a user-defined

exception
• Write PL/SQL code to raise an exception
• Write PL/SQL code to handle a raised

exception
• Write PL/SQL code to use

RAISE_APPLICATION_ERROR

21

Trapping User-Defined Exceptions

Copyright © 2009, Oracle. All rights reserved.

Try It / Solve It
The exercises in this lesson cover the following
topics:
• Defining, raising and trapping user-defined

errors
• Customizing PL/SQL exception messages

using RAISE_APPLICATION_ERROR

	Trapping User-Defined Exceptions
	What Will I Learn?
	Why Learn It?
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Summary
	Try It / Solve It

