
Copyright © 2009, Oracle. All rights reserved.

Iterative Control: Nested Loops

2

Iterative Control: Nested Loops

Copyright © 2009, Oracle. All rights reserved.

What Will I Learn?
In this lesson, you will learn to:

• Construct and execute PL/SQL using nested
loops

• Label loops and use the labels ın EXIT
statements

• Evaluate a nested loop construct and
identify the exit point

3

Iterative Control: Nested Loops

Copyright © 2009, Oracle. All rights reserved.

Why Learn It?
You’ve learned about looping constructs in
PL/SQL. This lesson discusses how you
can nest loops to multiple levels. You can
nest FOR, WHILE, and basic loops within
one another.

4

Iterative Control: Nested Loops

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Nested Loops
In PL/SQL, you can nest loops to multiple
levels. You can nest FOR, WHILE, and basic
loops within one another.
Consider the following example:

BEGIN
FOR v_outerloop IN 1..3 LOOP

FOR v_innerloop IN REVERSE 1..5 LOOP
DBMS_OUTPUT.PUT_LINE('Outer loop is:'||v_outerloop||

' and inner loop is: '||v_innerloop);
END LOOP;

END LOOP;
END;

Presenter
Presentation Notes
Loops can be nested within each other. In fact they commonly are. In PLSQL you can nest loops to multiple levels. You can nest FOR, WHILE, and basic loops within one another. This example shows a FOR loop nested inside another FOR loop. All combinations of nesting loops are allowed.

5

Iterative Control: Nested Loops

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Nested Loops
This example contains EXIT conditions in nested basic loops.

What if you want to exit from the outer loop at step A?

DECLARE
v_outer_done CHAR(3) := 'NO';
v_inner_done CHAR(3) := 'NO';

BEGIN
LOOP -- outer loop

...
LOOP -- inner loop

...

... -- step A
EXIT WHEN v_inner_done = 'YES';
...

END LOOP;
...
EXIT WHEN v_outer_done = 'YES';
...

END LOOP;
END;

6

Iterative Control: Nested Loops

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Loop Labels

DECLARE
...

BEGIN
<<outer_loop>>
LOOP -- outer loop

...
<<inner_loop>>
LOOP -- inner loop

EXIT outer_loop WHEN ... -- Exits both loops
EXIT WHEN v_inner_done = 'YES';
...

END LOOP;
...
EXIT WHEN v_outer_done = 'YES';
...

END LOOP;
END;

7

Iterative Control: Nested Loops

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Loop Labels (continued)

Loop label names follow the same rules as other
identifiers. A label is placed before a statement,
either on the same line or on a separate line. In
FOR or WHILE loops, place the label before FOR
or WHILE within label delimiters (<<label>>). If
the loop is labeled, the label name can optionally
be included after the END LOOP statement for
clarity.

Presenter
Presentation Notes
Just as blocks of code can be labeled, loops can be labeled also. Loop labels follow the same rules as other identifiers. The label is placed before a statement either on the same line or on a separate line. Labels before a FOR or WHILE loops is contained within the label delimiters two less than signs, the name of the label and two greater than signs. A common reason for labeling loops is when you have nested loops and you need to end an outer loop while you’re inside of an inner loop.

8

Iterative Control: Nested Loops

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Loop Labels (continued)
Label basic loops by placing the label before the word LOOP
within label delimiters (<<label>>).

DECLARE
v_outerloop PLS_INTEGER :=0;
v_innerloop PLS_INTEGER :=5;

BEGIN
<<Outer_loop>>
LOOP

v_outerloop := v_outerloop + 1;
v_innerloop := 5;
EXIT WHEN v_outerloop > 3;
<<Inner_loop>>
LOOP

DBMS_OUTPUT.PUT_LINE('Outer loop is:'||v_outerloop||
' and inner loop is: '||v_innerloop);

v_innerloop := v_innerloop - 1;
EXIT WHEN v_innerloop =0;

END LOOP Inner_loop;
END LOOP Outer_loop;

END;

9

Iterative Control: Nested Loops

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Nested Loops and Labels
In this example, there are two loops. The outer loop is identified
by the label <<Outer_Loop>>, and the inner loop is identified by
the label <<Inner_Loop>>.

…BEGIN
<<Outer_loop>>
LOOP

v_counter := v_counter+1;
EXIT WHEN v_counter>10;

<<Inner_loop>>
LOOP

...
EXIT Outer_loop WHEN v_total_done = 'YES';
-- Leave both loops
EXIT WHEN v_inner_done = 'YES';
-- Leave inner loop only
...

END LOOP Inner_loop;
...

END LOOP Outer_loop;
END;

Presenter
Presentation Notes
In addition to aiding program control, loop labels can also help to improve readability even when they are not needed. This example shows when a nested loop needs a label. There are two loops in this example. In the case of the ‘inner loop’, you see an EXIT outer_loop WHEN the variable v_total_done equals yes. This EXIT statement allows you to exit the entire loop while program execution is still in the inner loop. Notice the next EXIT statement, which says EXIT WHEN the variable v_inner_done equals ‘YES’ will only allow the inner loop to be exited. In this example, the outer loop label is necessary because we reference it in an EXIT statement within the inner loop. The inner loop label is not strictly necessary.

10

Iterative Control: Nested Loops

Copyright © 2009, Oracle. All rights reserved.

Summary
In this lesson, you learned to:

• Construct and execute PL/SQL using
nested loops

• Label loops and use the labels ın EXIT
statements

• Evaluate a nested loop construct and
identify the exit point

11

Iterative Control: Nested Loops

Copyright © 2009, Oracle. All rights reserved.

Try It/Solve It

The exercises in this lesson cover the
following topics:

•Constructing and executing PL/SQL using
nested loops
•Labeling loops and using the labels in EXIT
statements
•Evaluating a nested loop construct and
identifying the exit point

	Iterative Control: Nested Loops
	What Will I Learn?
	Why Learn It?
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Summary
	Try It/Solve It

