
Copyright © 2008, Oracle. All rights reserved.

Persistent State of Package Variables

2

Persistent State of Package Variables

Copyright © 2008, Oracle. All rights reserved.

What Will I Learn?
In this lesson, you will learn to:

• Identify persistent states of package
variables

• Control the persistent state of a
package cursor

3

Persistent State of Package Variables

Copyright © 2008, Oracle. All rights reserved.

Why Learn It?

Suppose you connect to the database and
modify the value in a package variable, for
example from 10 to 20. Later, you (or
someone else) invoke the package again
to read the value of the variable. What will
you/they see: 10 or 20? It depends!

Real applications often invoke the same
package many times. It is important to
understand when the values in package
variables are kept (persist) and when they
are lost.

4

Persistent State of Package Variables

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Package State

The collection of package variables and their current values
define the package state. The package state is:

• Initialized when the package is first loaded
• Persistent (by default) for the life of the session

– Stored in the session’s private memory area
– Unique to each session even if the second session is started

by the same user
– Subject to change when package subprograms are called or

public variables are modified.

Other sessions each have their own package state, and do not
see your changes.

5

Persistent State of Package Variables

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
The following is a simple package that initializes a single global
variable and contains a procedure to update it:

SCOTT and JONES call the procedure to update the variable.

CREATE OR REPLACE PACKAGE pers_pkg IS
g_var NUMBER := 10;
PROCEDURE upd_g_var (p_var IN NUMBER);

END pers_pkg;

CREATE OR REPLACE PACKAGE BODY pers_pkg IS
PROCEDURE upd_g_var (p_var IN NUMBER) IS
BEGIN
g_var := p_var;

END upd_g_var;
END pers_pkg;

GRANT EXECUTE ON pers_pkg TO SCOTT, JONES;

6

Persistent State of Package Variables

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
The following sequence of events occurs:

State for: Scott Jones
Time Event

Scott> .. svar := pers_pkg.g_var;

Jones> .. jvar := pers_pks.g_var;
Jones> .. pers_pkg.upd_g_var(20);
Scott> .. svar := pers_pkg.g_var;

Scott> .. pers_pkg.upd_g_var(50);
Jones> .. jvar := pers_pks.g_var;
Scott disconnects and reconnects
İn a new session

Scott> .. svar := pers_pkg.g_var;

9:00

9:30

9:35

10:00

10:05

-

10
20

20

10

10

50

10

7

Persistent State of Package Variables

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Explanation of the events on the previous slide:

• At 9:00: Scott connects and reads the variable, seeing the
initialized value 10.

• At 9:30: Jones connects and also reads the variable, also seeing
the initialized value 10. At this point there are two separate and
independent copies of the value, one in each session’s private
memory area. Jones now updates his own session’s value to 20
using the procedure. Scott then re-reads the variable but does not
see Jones’s change.

• At 9:35: Scott updates his own session’s value to 50. Again, Jones
cannot see the change.

• At 10:00: Scott disconnects and reconnects, creating a new
session.

• At 10:05: Scott reads the variable and sees the initialized value 10.

• These changes would not be visible in other sessions even if both
sessions are connected under the same user name.

8

Persistent State of Package Variables

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Persistent State of a Package Cursor

A cursor declared in the package specification is a type of global
variable, and follows the same persistency rules as any other
variable. A cursor’s state is not defined by a single numeric or
other value. A cursor’s state consists of the following attributes:

• Whether the cursor is open or closed
• If open, how many rows have been fetched from the cursor
(%ROWCOUNT) and whether the most recent fetch was successful
(%FOUND or %NOTFOUND).

The next three slides show the definition of a cursor and its
repeated use in a calling application.

9

Persistent State of Package Variables

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Persistent State of a Package Cursor: Package Specification

The cursor declaration is declared globally within the package
specification. Therefore, any or all of the package procedures can
reference it.

CREATE OR REPLACE PACKAGE curs_pkg IS
CURSOR emp_curs

IS SELECT employee_id FROM employees
ORDER BY employee_id;

PROCEDURE open_curs;
FUNCTION fetch_n_rows(n NUMBER := 1) RETURN BOOLEAN;
PROCEDURE close_curs;

END curs_pkg;

10

Persistent State of Package Variables

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Persistent State of a Package Cursor: Package Body

CREATE OR REPLACE PACKAGE BODY curs_pkg IS
PROCEDURE open_curs IS
BEGIN
IF NOT emp_curs%ISOPEN THEN OPEN emp_curs; END IF;

END open_curs;
FUNCTION fetch_n_rows(n NUMBER := 1) RETURN BOOLEAN IS
emp_id employees.employee_id%TYPE;

BEGIN
FOR count IN 1 .. n LOOP
FETCH emp_curs INTO emp_id;
EXIT WHEN emp_curs%NOTFOUND;
DBMS_OUTPUT.PUT_LINE('Id: ' ||(emp_id));

END LOOP;
RETURN emp_curs%FOUND;

END fetch_n_rows;
PROCEDURE close_curs IS BEGIN
IF emp_curs%ISOPEN THEN CLOSE emp_curs; END IF;

END close_curs;
END curs_pkg;

11

Persistent State of Package Variables

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Invoking CURS_PKG

Step 1 opens the cursor. Step 2 (in a loop) fetches and displays
the next three rows from the cursor until all rows have been
fetched. Step 3 closes the cursor.

DECLARE
v_more_rows_exist BOOLEAN := TRUE;

BEGIN
curs_pkg.open_curs; --1
LOOP
v_more_rows_exist := curs_pkg.fetch_n_rows(3); --2
DBMS_OUTPUT.PUT_LINE('-------');
EXIT WHEN NOT v_more_rows_exist;

END LOOP;
curs_pkg.close_curs; --3

END;

12

Persistent State of Package Variables

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Invoking CURS_PKG (continued)

• The first looped call to fetch_n_rows displays the first
three rows. The second time round the loop, the next three
rows are fetched and displayed. And so on.

• This technique is often used in applications that need to
FETCH a large number of rows from a cursor, but can only
display them to the user one screenful at a time.

DECLARE
v_more_rows_exist BOOLEAN := TRUE;

BEGIN
curs_pkg.open_curs; --1
LOOP
v_more_rows_exist := curs_pkg.fetch_n_rows(3); --2
DBMS_OUTPUT.PUT_LINE('-------');
EXIT WHEN NOT v_more_rows_exist;

END LOOP;
curs_pkg.close_curs; --3

END;

13

Persistent State of Package Variables

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Terminology
Key terms used in this lesson include:

Package state

14

Persistent State of Package Variables

Copyright © 2008, Oracle. All rights reserved.

Summary
In this lesson, you learned to:
• Identify persistent states of package

variables
• Control the persistent state of a

package cursor

15

Persistent State of Package Variables

Copyright © 2008, Oracle. All rights reserved.

Try It / Solve It
The exercises in this lesson cover
the following topics:
• Identifying persistent states of

package variables
• Controlling the persistent state

of a package cursor

	Persistent State of Package Variables
	What Will I Learn?
	Why Learn It?
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Summary
	Try It / Solve It

