
Copyright © 2009, Oracle. All rights reserved.

Introduction to Explicit Cursors

2

Introduction to Explicit Cursors

Copyright © 2009, Oracle. All rights reserved.

What Will I Learn?
In this lesson, you will learn to:
• Distinguish between an implicit and an

explicit cursor
• Describe why and when to use an explicit

cursor in PL/SQL code
• List two or more guidelines for declaring

and controlling explicit cursors
• Create PL/SQL code that successfully

opens a cursor and fetches a piece of data
into a variable

• Use a simple loop to fetch multiple rows
from a cursor

• Create PL/SQL code that successfully
closes a cursor after fetching data into a
variable

3

Introduction to Explicit Cursors

Copyright © 2009, Oracle. All rights reserved.

Why Learn It?
You have learned that an SQL SELECT
statement in a PL/SQL block is successful only if
it returns exactly one row.

What if you need to write a SELECT statement
that returns more than one row? For example,
you need to produce a report of all employees?

To return more than one row, you must declare
and use an explicit cursor.

4

Introduction to Explicit Cursors

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Context Areas and Cursors
The Oracle server allocates a private memory
area called a context area to store the data
processed by an SQL statement.
Every context area (and therefore every SQL
statement) has a cursor associated with it. You
can think of a cursor either as a label for the
context area, or as a pointer to the context area.
In fact, a cursor is both of these items.

Context Area

Cursor

Presenter
Presentation Notes
If you build a SELECT statement that returns more than one row from a database, you need to be able to declare and use an explicit cursor. The Oracle server allocates a private memory area, called a context area, to store the data processed by a SQL statement. Every context area has a cursor associated with it. You can think of the cursor either as a label to the context area or as a pointer to the context area. In fact, a cursor is both of these things.

You may write a SQL statement that only returns one row and use that in PL/SQL. But, if the database changes at a future time the same statement may return multiple rows. In order to accommodate future changes in the database, we need to use cursors most of the time when we write SQL SELECT statements within PL/SQL. The point is not whether there is more than one row returned, but that there can be more than one row. Programmers must think about the data that is possible as well as the data that exists now so that programs don’t have to be updated later.

5

Introduction to Explicit Cursors

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Implicit and Explicit Cursors

There are two types of cursors:

• Implicit cursors: Defined automatically by Oracle for all SQL
DML statements (INSERT, UPDATE, DELETE, and MERGE),
and for SELECT statements that return only one row.

• Explicit cursors: Declared by the programmer for queries that
return more than one row. You can use explicit cursors to
name a context area and access its stored data.

Presenter
Presentation Notes
A SQL cursor is a private Oracle SQL working area. There are two types of cursors, implicit and explicit. Implicit cursors are named by the database and always begin with SQL. Implicit cursors are defined automatically by Oracle for all SQL DML statements such as INSERT, UPDATE, DELETE, and MERGE and for SELECT statements that return only one row. Explicit cursors, are declared by the programmer and are used for queries that return more than one row.

6

Introduction to Explicit Cursors

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Limitations of Implicit Cursors

There is more than one row in the EMPLOYEES table:

DECLARE
v_salary employees.salary%TYPE;

BEGIN
SELECT salary INTO v_salary

FROM employees;
DBMS_OUTPUT.PUT_LINE(' Salary is : '||v_salary);

END;

ORA-01422: exact fetch returns more than requested number of rows

7

Introduction to Explicit Cursors

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Explicit Cursors

With an explicit cursor, you can retrieve multiple rows from a
database table, have a pointer to each row that is retrieved, and
work on the rows one at a time.
The following are some reasons to use an explicit cursor:

• It is the only way in PL/SQL to retrieve more than one row
from a table.

• Each row is fetched by a separate program statement, giving
the programmer more control over the processing of the
rows.

8

Introduction to Explicit Cursors

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Example of an Explicit Cursor
The following example uses an explicit cursor to obtain the
country name and national holiday for countries in Asia.

DECLARE
CURSOR wf_holiday_cursor IS
SELECT country_name, national_holiday_date
FROM wf_countries where region_id IN(30,34,35);
v_country_name wf_countries.country_name%TYPE;
v_holiday wf_countries.national_holiday_date%TYPE;

BEGIN
OPEN wf_holiday_cursor;
LOOP

FETCH wf_holiday_cursor INTO v_country_name, v_holiday;
EXIT WHEN wf_holiday_cursor%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(v_country_name||' '||v_holiday);

END LOOP;
CLOSE wf_holiday_cursor;

END;

9

Introduction to Explicit Cursors

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Explicit Cursor Operations

The set of rows returned by a multiple-row query is called the
active set, and is stored in the context area. Its size is the
number of rows that meet your search criteria.

Active set

Table

100 King AD_PRES

101 Kochhar AD_VP

102 De Haan AD_VP

139 Seo ST_CLERK

Explicit Cursor

10

Introduction to Explicit Cursors

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Explicit Cursor Operations

Think of the context area (named by the cursor) as a box, and the
active set as the contents of the box. To get at the data, you must
OPEN the box and FETCH each row from the box one at a time.
When finished, you must CLOSE the box.

Active set

Table

100 King AD_PRES

101 Kochhar AD_VP

102 De Haan AD_VP

139 Seo ST_CLERK

Explicit Cursor

Presenter
Presentation Notes
The set of rows returned by a multiple row query in SQL is called an active set and is stored in the context area of the cursor. Think of the context area as a box and the active set as the contents of the box. We start by creating a box in the DECLARE section. Next, we must open the box to get the data and fetch each row from the box one at a time. When finished, we must close the box. Notice the words, DECLARE, OPEN, FETCH, and CLOSE. These are the words we use to control the cursor. An explicit cursor points to the current row in the result set. This allows your program to process these rows one at a time.

11

Introduction to Explicit Cursors

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Controlling Explicit Cursors

Fetch each row,
one at a time.

Close the cursor.

Cursor
pointer

Open the cursor.1

2

3

Cursor
pointer

Cursor
pointer

12

Introduction to Explicit Cursors

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Declaring and Controlling Explicit Cursors

• Retrieve
the current
row into
variables.

FETCH

• Test for
existing
rows.

EMPTY?

• Return to
FETCH if
rows are
found.

No

• Release the
active set.

CLOSEYes

• Name an
active set.

DECLARE

• Fill the
active set
with data.

OPEN

Presenter
Presentation Notes
This slide illustrates how a cursor works. DECLARE is used to name the cursor in the declarative section. The OPEN statement executes the query associated with the cursor, identifies the results set, and positions the cursor before the first row. The FETCH statement retrieves the current row and advances the cursor to the next row. It will keep on bringing out rows until the set is empty. And finally, when the last row has been processed, the CLOSE statement disables the cursor and releases the memory area.

13

Introduction to Explicit Cursors

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Steps for Using Explicit Cursors
You first DECLARE a cursor, and then you use the OPEN,
FETCH, and CLOSE statements to control a cursor.

1.DECLARE the cursor in the declarative section.
2.OPEN the cursor.
3.FETCH each row from the active set until the box is empty.
4.CLOSE the cursor.

The OPEN statement executes the query associated with the
cursor, identifies the result set, and positions the cursor before
the first row. The FETCH statement retrieves the current row and
advances the cursor to the next row. When the last row has been
processed, the CLOSE statement disables the cursor.

14

Introduction to Explicit Cursors

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Declaring the Cursor
The active set of a cursor is determined by the SELECT
statement in the cursor declaration.

Syntax:

In the syntax:
cursor_name Is a PL/SQL identifier
select_statement Is a SELECT statement without an

INTO clause

CURSOR cursor_name IS

select_statement;

15

Introduction to Explicit Cursors

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Declaring the Cursor: Example 1

The emp_cursor cursor is declared to retrieve the
employee_id and last_name columns of the employees
working in the department with a department_id of 30.

DECLARE
CURSOR emp_cursor IS
SELECT employee_id, last_name FROM employees
WHERE department_id =30;

...

Presenter
Presentation Notes
Take a moment to review the example on the slide. The cursor is called emp_cursor and it retrieves the employee_id and last_name columns of the employees working in department 30. Note that this example only shows the declaration of the cursor. We open and retrieve the data later using the OPEN and FETCH statements.

16

Introduction to Explicit Cursors

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Declaring the Cursor: Example 2

The dept_cursor cursor is declared to retrieve all the details
for the departments with the location_id 1700. You want to
fetch and process these rows in ascending sequence by
department_name.

DECLARE
CURSOR dept_cursor IS
SELECT * FROM departments
WHERE location_id = 1700
ORDER BY department_name;

...

Presenter
Presentation Notes

17

Introduction to Explicit Cursors

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Declaring the Cursor: Example 3

A SELECT statement in a cursor declaration can include joins,
group functions, and subqueries. This example retrieves each
department that has at least two employees, giving the
department name and number of employees.

DECLARE
CURSOR dept_emp_cursor IS
SELECT department_name, COUNT(*) AS how_many
FROM departments d, employees e

WHERE d.department_id = e.department_id
GROUP BY d.department_name
HAVING COUNT(*) > 1;

...

Presenter
Presentation Notes

18

Introduction to Explicit Cursors

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Guidelines for Declaring the Cursor

• Do not include the INTO clause in the cursor
declaration because it appears later in the
FETCH statement.

• If processing rows in a specific sequence is
required, then use the ORDER BY clause in
the query.

• The cursor can be any valid SELECT
statement, including joins, subqueries, and
so on.

• If a cursor declaration references any
PL/SQL variables, these variables must be
declared before declaring the cursor.

Presenter
Presentation Notes
Let’s look at some guidelines for declaring cursors. First, make sure you can differentiate between SQL select statements that fetch INTO variables and cursors that can process multiple rows of data. When you declare a cursor, you do not use the INTO keyword. If the business requirements specify that data should be returned in a sequence, use the ORDER BY clause in the query. The cursor can be any valid SELECT statement, including joins, subqueries, and so on. If a cursor declaration references any PL/SQL variables, these variables must be declared before declaring the cursor. SQL SELECT statements can be very in depth, especially with joins and subqueries combined. The code needs to be written to be readable and understandable. Along with these guidelines, remember to indent, capitalize keywords, and use spaces for readability.

19

Introduction to Explicit Cursors

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Opening the Cursor

The OPEN statement executes the query associated with the
cursor, identifies the active set, and positions the cursor pointer
to the first row. The OPEN statement is included in the executable
section of the PL/SQL block.

DECLARE
CURSOR emp_cursor IS
SELECT employee_id, last_name FROM employees
WHERE department_id =30;

...
BEGIN
OPEN emp_cursor;

...

Presenter
Presentation Notes
The OPEN statement performs the following operations: first, it allocates memory for a context area, or using our box analogy, it creates the box. Next, it executes the SELECT statement in the cursor declaration, returning the results into the active set, or we can say it fills the box with data. And finally, it positions the pointer to the first row in the active set.

20

Introduction to Explicit Cursors

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Opening the Cursor (continued)

The OPEN statement performs the following
operations:

1. Allocates memory for a context area
(creates the box)

2. Executes the SELECT statement in the
cursor declaration, returning the results
into the active set (fills the box with data)

3. Positions the pointer to the first row in the
active set

21

Introduction to Explicit Cursors

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Fetching Data from the Cursor
The FETCH statement retrieves the rows from the cursor one at a
time. After each fetch, the cursor advances to the next row in the
active set. Two variables, v_empno and v_lname, are declared
to hold the fetched values from the cursor.

DECLARE
CURSOR emp_cursor IS

SELECT employee_id, last_name FROM employees
WHERE department_id =10;

v_empno employees.employee_id%TYPE;
v_lname employees.last_name%TYPE;

BEGIN
OPEN emp_cursor;
FETCH emp_cursor INTO v_empno, v_lname;
DBMS_OUTPUT.PUT_LINE(v_empno ||' '||v_lname);
...

END;
200 Whalen

Statement processed.

22

Introduction to Explicit Cursors

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Fetching Data from the Cursor
You have successfully fetched the values from the cursor into the
variables. However, there are six employees in department 30.
Only one row has been fetched. To fetch all the rows, you have
to make use of loops.

DECLARE
CURSOR emp_cursor IS

SELECT employee_id, last_name FROM employees
WHERE department_id =50;

v_empno employees.employee_id%TYPE;
v_lname employees.last_name%TYPE;

BEGIN
OPEN emp_cursor;
LOOP
FETCH emp_cursor INTO v_empno, v_lname;
EXIT WHEN emp_cursor%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(v_empno ||' '||v_lname);

END LOOP; …
END;

124 Mourgos
141 Rajs
142 Davies
143 Matos
144 Vargas

Statement processed.

Presenter
Presentation Notes
After the cursor is open, the next statement is the FETCH statement, which retrieves the row from the cursor one at a time. We’re now ready to look at some code. In the declarative section the cursor is named, emp_cursor, the SELECT statement is defined, and variables to hold the data returned by the SELECT statement, v_empno and v_lname are also defined. Notice they’re defined with the %TYPE designation so that they exactly match the columns in the database table from where the data is being fetched.

Next comes the OPEN statement that opens the cursor; the FETCH part of the cursor is within a loop, so we fetch emp_cursor into the variables v_empno and v_lname. The first row goes into the variables during the first iteration of the loop. The EXIT WHEN uses emp_cursor%NOTFOUND to exit the loop. This is an example of an explicit cursor attribute used to test for the outcome of the cursor, just like we did with implicit cursors. We will look at these attributes in more detail later. This tells us to leave the loop when the box is empty. But in this case, the box is not empty, so the cursor advances to the next row in the active set. The DBMS_OUTPUT.PUT_LINE displays the results from each fetch. Finally,­­ the loop ends and the executable statement ends with the END semicolon.

23

Introduction to Explicit Cursors

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Guidelines for Fetching Data From the Cursor
• Include the same number of variables in the INTO clause of

the FETCH statement as columns in the SELECT statement,
and be sure that the data types are compatible.

• Match each variable to correspond to the columns
positionally.

• Test to see whether the cursor contains rows. If a fetch
acquires no values, then there are no rows left to process in
the active set and no error is recorded. The last row is re-
processed.

• You can use the %NOTFOUND cursor attribute to test for the
exit condition.

Presenter
Presentation Notes
This slide shows guidelines for fetching data from the cursor. Data type mismatching is the most common mistake that programmers make when writing their code. Make sure each variable corresponds to the columns in your select statement in order. You must make sure you have the same number of variables in your INTO statement as you have in your SELECT list. Make sure to test to see whether the cursor contains rows in your loop. If a fetch acquires no values then there are no rows left to process in the active set and no error is recorded. The last row will be re-processed. You can use the cursor attribute %NOTFOUND to test for the exit condition.

24

Introduction to Explicit Cursors

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Fetching Data From the Cursor
What is wrong with this example?

DECLARE
CURSOR emp_cursor IS

SELECT employee_id, last_name, salary FROM employees
WHERE department_id =30;

v_empno employees.employee_id%TYPE;
v_lname employees.last_name%TYPE;
v_sal employees.salary%TYPE;

BEGIN
OPEN emp_cursor;
LOOP

FETCH emp_cursor INTO v_empno, v_lname;
EXIT WHEN emp_cursor%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(v_empno ||' '||v_lname);

END LOOP; …
END;

25

Introduction to Explicit Cursors

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Fetching Data From the Cursor (continued)
There is only one employee in department 10. What happens
when this example is executed?

DECLARE
CURSOR emp_cursor IS

SELECT employee_id, last_name FROM employees
WHERE department_id =10;

v_empno employees.employee_id%TYPE;
v_lname employees.last_name%TYPE;

BEGIN
OPEN emp_cursor;
LOOP

FETCH emp_cursor INTO v_empno, v_lname;
DBMS_OUTPUT.PUT_LINE(v_empno ||' '||v_lname);

END LOOP; …
END;

26

Introduction to Explicit Cursors

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Closing the Cursor
The CLOSE statement disables the cursor, releases the context
area, and undefines the active set. Close the cursor after
completing the processing of the FETCH statement. You can
reopen the cursor later if required.

Think of CLOSE as closing and emptying the box, so you can no
longer FETCH its contents.

...
LOOP
FETCH emp_cursor INTO v_empno, v_lname;
EXIT WHEN emp_cursor%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(v_empno ||' '||v_lname);

END LOOP;
CLOSE emp_cursor;

END;

Presenter
Presentation Notes
Finally, when all the rows have been processed, we need to close the cursor. The CLOSE statement disables the cursor, releases the context area, and undefines the active set. The CLOSE statement comes after the FETCH section in the code. Once a cursor is closed, the memory is released but the data is still in memory and will be overwritten when a new OPEN statement is executed. A cursor can be reopened only if it is closed.

27

Introduction to Explicit Cursors

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Guidelines for Closing the Cursor

• A cursor can be reopened only if it is closed.
If you attempt to fetch data from a cursor
after it has been closed, then an
INVALID_CURSOR exception is raised.

• If you later reopen the cursor, the
associated SELECT statement is re-
executed to re-populate the context area
with the most recent data from the
database.

28

Introduction to Explicit Cursors

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Putting It All Together
The following example declares and processes a cursor to obtain
the country name and national holiday for countries in Asia.

DECLARE
CURSOR wf_holiday_cursor IS

SELECT country_name, national_holiday_date
FROM wf_countries where region_id IN(30,34,35);

v_country_name wf_countries.country_name%TYPE;
v_holiday wf_countries.national_holiday_date%TYPE;

BEGIN
OPEN wf_holiday_cursor;
LOOP

FETCH wf_holiday_cursor INTO v_country_name, v_holiday;
EXIT WHEN wf_holiday_cursor%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(v_country_name||' '||v_holiday);

END LOOP;
CLOSE wf_holiday_cursor;

END;

Presenter
Presentation Notes
Let’s look at a complete block of code containing a cursor. This example declares and processes a cursor to obtain the country name and national holiday for countries in Asia. We have a cursor statement being declared along with other variables to be used. Once the cursor is open, a loop is started to fetch the data. When all the data has been fetched and processed, the cursor is closed and memory is released. Take a moment and try this example in Application Express. See if the results match your expectations.

29

Introduction to Explicit Cursors

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Terminology
Key terms used in this lesson include:

Context area
Cursor
Implicit cursor
Explicit cursor
Active set
FETCH
OPEN
CLOSE

30

Introduction to Explicit Cursors

Copyright © 2009, Oracle. All rights reserved.

Summary
In this lesson, you learned to:
• Distinguish between an implicit and an

explicit cursor
• Describe why and when to use an explicit

cursor in PL/SQL code
• List two or more guidelines for declaring and

controlling explicit cursors
• Create PL/SQL code that successfully opens

a cursor and fetches a piece of data into a
variable

• Use a simple loop to fetch multiple rows from
a cursor

• Create PL/SQL code that successfully closes
a cursor after fetching data into a variable

31

Introduction to Explicit Cursors

Copyright © 2009, Oracle. All rights reserved.

Try It/Solve It
The exercises in this lesson cover the following
topics:
• Distinguishing between an implicit and an

explicit cursor
• Discussing when and why to use an

explicit cursor
• Declaring and controlling explicit cursors
• Using a simple loop to fetch multiple rows

from a cursor

	Introduction to Explicit Cursors
	What Will I Learn?
	Why Learn It?
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Summary
	Try It/Solve It

