
Copyright © 2009, Oracle. All rights reserved.

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

Semester 2 Final Review

This slide set contains the following topics:
• Creating DDL and Database Event Triggers
• Managing Triggers
• Using Large Object Data Types
• Managing BFILES
• User-Defined Records
• Index by Tables
• Understanding Dependencies

Copyright © 2009, Oracle. All rights reserved.

Creating DDL and Database Event Triggers

4

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

DDL and Database Event Triggers

DDL Triggers are fired by DDL statements: CREATE, ALTER or
DROP.

Database Event triggers are fired by non-SQL events in the
database, for example:

• A user connects to, or disconnects from, the database

• The DBA starts up, or shuts down, the database

• A specific exception is raised in a user session.

5

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

Creating Triggers on DDL Statements

Syntax:

• ON DATABASE will fire the trigger for DDL on all schemas in
the database

• ON SCHEMA will fire the trigger only for DDL on objects in
your own schema

CREATE [OR REPLACE] TRIGGER trigger_name
Timing
[ddl_event1 [OR ddl_event2 OR ...]]
ON {DATABASE|SCHEMA}
trigger_body

Presenter
Presentation Notes
Creating Triggers on DDL Statements

timing: BEFORE or AFTER (you cannot use INSTEAD OF with DDL or Database Event triggers)

ddl_event: CREATE or ALTER or DROP

Only the DBA can create DDL triggers on other users’ schemas (either by ON DATABASE or by ON schema-name.SCHEMA)

The trigger body represents a complete PL/SQL block.	

You can create triggers for these events on DATABASE or SCHEMA. You also specify BEFORE or AFTER for the timing of the trigger.

DDL triggers fire only if the object being created is a cluster, function, index, package, procedure, role, sequence, synonym, table, tablespace, trigger, type, view, or user.

6

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

Example of a DDL Trigger:

We want to write a log record every time a new database object
is created in our schema:

The trigger will fire whenever any (type of) object is created. We
cannot create a DDL trigger which refers to a specific database
object.

CREATE OR REPLACE TRIGGER log_create_trigg
AFTER CREATE ON SCHEMA
BEGIN
INSERT INTO log_table
VALUES (USER, SYSDATE);

END;

Presenter
Presentation Notes
Instructor Note

Stress the last point on the slide. DDL triggers can specify only ON SCHEMA or ON DATABASE. We cannot say (for example) AFTER CREATE ON TABLE.

Point out that these are not DML row triggers. Therefore we cannot use qualifiers such as :OLD and :NEW. In the slide example, we would like the log table to record which object was created, by (something like):

INSERT INTO log_table VALUES (USER, SYSDATE, :NEW.object_type, :NEW.object_name);

But unfortunately we cannot do this.

7

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

1. LOGON and LOGOFF triggers:

CREATE OR REPLACE TRIGGER logon_trig
AFTER LOGON ON SCHEMA
BEGIN
INSERT INTO log_trig_table(user_id,log_date,action)
VALUES (USER, SYSDATE, 'Logging on');
END;

CREATE OR REPLACE TRIGGER logoff_trig
BEFORE LOGOFF ON SCHEMA
BEGIN
INSERT INTO log_trig_table(user_id,log_date,action)
VALUES (USER, SYSDATE, 'Logging off');
END;

Examples of Database Event Triggers

Presenter
Presentation Notes
Creating Database Event Triggers

Before coding the trigger body, decide on the components of the trigger.

Triggers on system events can be defined at the database or schema level. For example, a database shutdown trigger is defined at the database level. Triggers on data definition language (DDL) statements, or a user logging on or off, can also be defined at either the database level or schema level. Triggers on DML statements are defined on a specific table or a view.

A trigger defined at the database level fires for all users, and a trigger defined at the schema or table level fires only when the triggering event involves that schema or table.

Triggering events that can cause a trigger to fire:

A data definition statement on an object in the database or schema

A specific user (or any user) logging on or off

A database shutdown or startup

Any error that occurs

8

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

Examples of Database Event Triggers

2. A SERVERERROR Trigger:

We want to keep a log of any ORA-00942 errors which occur in
our sessions:

CREATE OR REPLACE TRIGGER servererror_trig
AFTER SERVERERROR ON SCHEMA
BEGIN
IF (IS_SERVERERROR (942)) THEN
INSERT INTO error_log_table ...

END IF;
END;

Presenter
Presentation Notes
If the IS_SERVERERROR … conditional test is omitted, the trigger will fire when any Oracle server unhandled exception occurs.

9

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

Note: There is no END; statement, and no semicolon at the end
of the CALL statement.

CREATE OR REPLACE TRIGGER log_employee
BEFORE INSERT ON EMPLOYEES
CALL log_execution

CREATE [OR REPLACE] TRIGGER trigger_name
timing
event1 [OR event2 OR event3]
ON table_name
[REFERENCING OLD AS old | NEW AS new]
[FOR EACH ROW]
[WHEN condition]
CALL procedure_name

CALL Statements

Presenter
Presentation Notes
CALL Statements

A CALL statement enables you to call a stored procedure, rather than code the PL/SQL body in the trigger itself. The procedure can be implemented in PL/SQL, C, or Java.

The call can reference the trigger attributes :NEW and :OLD as parameters, as in the following example:

CREATE TRIGGER salary_check

	BEFORE UPDATE OF salary, job_id ON employees

	FOR EACH ROW

	WHEN (NEW.job_id <> 'AD_PRES')

	CALL check_salary(:NEW.job_id, :NEW.salary)

	/

Note: There is no semicolon at the end of the CALL statement.

In the preceding example, the trigger calls a check_salary procedure. The procedure compares the new salary with the salary range for the new job ID from the JOBS table.

10

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

Mutating Tables and Row Triggers

A mutating table is a table which is currently being modified by a
DML statement.

A row trigger cannot SELECT from a mutating table, because it
would see an inconsistent set of data (the data in the table would
be changing while the trigger was trying to read it).

However, a row trigger can SELECT from a different table if
needed.

This restriction does not apply to DML statement triggers, only to
DML row triggers.

Presenter
Presentation Notes
Instructor Notes

For example:

CREATE OR REPLACE TRIGGER emp_trigg

AFTER INSERT OR UPDATE OR DELETE ON employees -- EMPLOYEES is the mutating table

FOR EACH ROW

BEGIN

 SELECT … FROM employees … -- is not allowed

 SELECT … FROM departments … -- is allowed

 …

END;

11

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

A runtime error will occur because the trigger is SELECTing from
the same table as the triggering DML statement is referencing.

CREATE OR REPLACE TRIGGER check_salary
BEFORE INSERT OR UPDATE OF salary, job_id ON employees
FOR EACH ROW

DECLARE
v_minsalary employees.salary%TYPE;
v_maxsalary employees.salary%TYPE;

BEGIN
SELECT MIN(salary), MAX(salary)
INTO v_minsalary, v_maxsalary
FROM employees
WHERE job_id = :NEW.job_id;
IF :NEW.salary < v_minsalary OR

:NEW.salary > v_maxsalary THEN
RAISE_APPLICATION_ERROR(-20505,'Out of range');

END IF;
END;

Mutating Table: Example

Presenter
Presentation Notes
Mutating Table: Example

The CHECK_SALARY trigger in the example attempts to guarantee that whenever a new employee is added to the EMPLOYEES table or whenever an existing employee’s salary or job ID is changed, the employee’s salary falls within the established salary range for the employee’s job.

When an employee record is updated, the CHECK_SALARY trigger is fired for each row that is updated. The trigger code queries the same table that is being updated. Therefore, it is said that the EMPLOYEES table is a mutating table.

12

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

UPDATE employees
SET salary = 3400
WHERE last_name = 'Davies';

ORA-04091: table USVA_TEST_SQL01_T01.EMPLOYEES is mutating, trigger/function may not
see it
ORA-06512: at “USVA_TEST_SQL01_T01.CHECK_SALARY”, line 5

ORA-04088: error during execution of trigger 'USVA_TEST_SQL01_T01.CHECK_SALARY'
3. WHERE last_name = 'Davies';

Mutating Table: Example

Presenter
Presentation Notes
Mutating Table: Example (continued)

In the example, the trigger code tries to read or select data from a mutating table.

If you restrict the salary within a range between the minimum existing value and the maximum existing value, then you get a run-time error. The EMPLOYEES table is mutating, or in a state of change; therefore, the trigger cannot read from it.

Remember that functions can also cause a mutating table error when they are invoked in a DML statement.

Possible Solutions

Possible solutions to this mutating table problem include the following:

Store the summary data (the minimum salaries and the maximum salaries) in another summary table, which is kept up-to-date with other DML triggers.

Store the summary data in a PL/SQL package, and access the data from the package. This can be done in a BEFORE statement trigger.

Depending on the nature of the problem, a solution can become more convoluted and difficult to solve. In this case, consider implementing the rules in the application or middle tier and avoid using database triggers to perform overly complex business rules.

Copyright © 2009, Oracle. All rights reserved.

Managing Triggers

14

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

To create a trigger in your own schema, you need:

• CREATE TRIGGER system privilege
• Normal object privileges (SELECT, UPDATE, EXECUTE

etc.) on any objects in other schemas that are referenced in
your trigger body

• ALTER privilege on the table or view associated with the
trigger.

Statements in the trigger body use the privileges of the trigger
owner (definer’s rights), not the privileges of the user executing
the operation that fires the trigger.

Privileges Needed for Triggers

Presenter
Presentation Notes
Managing Triggers

To create a trigger in your schema, you need the CREATE TRIGGER system privilege, and you must either own the table specified in the triggering statement, have the ALTER privilege for the table in the triggering statement, or have the ALTER ANY TABLE system privilege. You can alter or drop your triggers without any further privileges being required.

If the ANY keyword is used, then you can create, alter, or drop your own triggers and those in another schema and can be associated with any user’s table.

You do not need any privileges to invoke a trigger in your schema. A trigger is invoked by DML statements that you issue. But if your trigger refers to any objects that are not in your schema, the user creating the trigger must have the EXECUTE privilege on the referenced procedures, functions, or packages, and not through roles. As with stored procedures, statements in the trigger body use the privileges of the trigger owner, not the privileges of the user executing the operation that fires the trigger.

To create a trigger on DATABASE, you must have the ADMINISTER DATABASE TRIGGER privilege. If this privilege is later revoked, then you can drop the trigger but you cannot alter it.

15

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

Privileges Needed for Triggers: Example

User MOE needs to create the following trigger:

Moe will need:
- CREATE TRIGGER

- ALTER on TOM.EMPLOYEES
- INSERT on MARY.LOG_TABLE
- EXECUTE on SHARON.CALLEDPROC.

CREATE OR REPLACE TRIGGER upd_tom_emp
AFTER UPDATE ON tom.employees
BEGIN
INSERT INTO mary.log_table VALUES(USER,SYSDATE);
sharon.calledproc;

END;

Presenter
Presentation Notes
Instructor Note

Point out that MOE does not need UPDATE privilege on TOM.EMPLOYEES. The user who fires the trigger by executing UPDATE tom.employees SET ….; will need UPDATE privilege, but the trigger owner does not.

16

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

You can view the following trigger information:
• USER_OBJECTS data dictionary view: object information
• USER_TRIGGERS data dictionary view: text of the trigger
• USER_ERRORS data dictionary view: PL/SQL syntax errors

(compilation errors) of the trigger

Viewing Trigger Information

Presenter
Presentation Notes
Viewing Trigger Information

The slide shows the data dictionary views that you can access to get information regarding the triggers.

The USER_OBJECTS view contains the name and status of the trigger and the date and time when the trigger was created.

The USER_ERRORS view contains the details of the compilation errors that occurred while a trigger was compiling. The contents of these views are similar to those for subprograms.

The USER_TRIGGERS view contains details such as name, type, triggering event, the table on which the trigger is created, and the body of the trigger.

The SELECT Username FROM USER_USERS; statement gives the name of the owner of the trigger, not the name of the user who is updating the table.

17

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

Column

TRIGGER_NAME

TRIGGER_TYPE

TRIGGERING_EVENT

TABLE_NAME

REFERENCING_NAMES

WHEN_CLAUSE

STATUS

TRIGGER_BODY

Column Description

Name of the trigger

The type is BEFORE, AFTER, INSTEAD OF

The DML operation firing the trigger

Name of the database table

Name used for :OLD and :NEW

The when_clause used

The status of the trigger

The action to take

Not all columns are shown here

Using USER_TRIGGERS

Presenter
Presentation Notes
Using USER_TRIGGERS

If the source file is unavailable, then you can use iSQL*Plus to regenerate it from USER_TRIGGERS. You can also examine the ALL_TRIGGERS and DBA_TRIGGERS views, each of which contains the additional column OWNER, for the owner of the object.

18

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

SELECT trigger_name, trigger_type, triggering_event,
table_name, status, trigger_body

FROM USER_TRIGGERS
WHERE trigger_name = 'RESTRICT_SALARY';

TRIGGER_NAME TRIGGER_TYPE TRIGGERING_EVENT TABLE_NAME STATUS TRIGGER_BODY

RESTRICT_SALARY BEFORE EACH INSERT OR UPDATE EMPLOYEES ENABLED BEGIN IF NOT (:NEW job_id IN

ROW (‘AD_PRES’, ‘AD_VP’)) AND
:NEW.salary > 15000

THEN RAISE_APPLICATION_ERROR
(-20202, ‘Employee cannot earn more
than $15,000’); END IF; END;

Listing the Code of Triggers

Presenter
Presentation Notes
Example

Use the USER_TRIGGERS data dictionary view to display information about the RESTRICT_SALARY trigger.

19

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

• Disable or enable a database trigger:

• Disable or enable all triggers for a table:

• Recompile a trigger for a table:

ALTER TRIGGER trigger_name DISABLE | ENABLE;

ALTER TABLE table_name DISABLE | ENABLE
ALL TRIGGERS;

ALTER TRIGGER trigger_name COMPILE;

Managing Triggers

Presenter
Presentation Notes
Managing Triggers

A trigger has two modes or states: ENABLED and DISABLED. When a trigger is first created, it is enabled by default. The Oracle server checks integrity constraints for enabled triggers and guarantees that triggers cannot compromise them. In addition, the Oracle server provides read-consistent views for queries and constraints, manages the dependencies, and provides a two-phase commit process if a trigger updates remote tables in a distributed database.

Disabling a Trigger

By using the ALTER TRIGGER syntax, or disable all triggers on a table by using the ALTER TABLE syntax

To improve performance or to avoid data integrity checks when loading massive amounts of data with utilities such as SQL*Loader. Consider disabling a trigger when it references a database object that is currently unavailable, due to a failed network connection, disk crash, offline data file, or offline tablespace.

Recompiling a Trigger

By using the ALTER TRIGGER command to explicitly recompile a trigger that is invalid

By issuing an ALTER TRIGGER statement with the COMPILE option, regardless of whether it is valid or invalid

20

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

To remove a trigger from the database, use the DROP TRIGGER
statement:

Example:

Note: All triggers on a table are removed when the table is
removed.

DROP TRIGGER secure_emp;

DROP TRIGGER trigger_name;

Removing Triggers

Presenter
Presentation Notes
Removing Triggers

When a trigger is no longer required, use a SQL statement in iSQL*Plus to remove it.

Copyright © 2009, Oracle. All rights reserved.

Using Large Object Data Types

22

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

• The Problem:
– In SQL, the largest character column is 4096 bytes.
– There is no specific datatype for MP3, JPEG, EXE etc.
– What if there is a need to store an object bigger than

4KB?
• The Solution:

– Large Objects (LOBs) address all of these problems.
– They can store ANYTHING of any type.
– A single LOB column value in a table can be up to 4GB.

Large Object (LOB) Column Datatypes

23

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

• The Old Way
– There are two deprecated data types: LONG and LONG RAW.
– They should not be used any more.

• The New Way
– LOBs come in three flavors: CLOB, BLOB, and BFILE.
– CLOB: Character Large Objects, such as resumes, text articles,

source code files.
– BLOB: Binary Large Objects, such as sound (MP3), photos

(JPEG, BMP), proprietary formats (PDF, DOC, XLS), and
executables (EXE, DDL).

– BFILE: Binary Files, just like BLOB but stored outside the
database, often on separate media (CD, DVD, HD-DVD).

Two ways to store large objects: the old and the new way

Presenter
Presentation Notes
“Deprecated” means that you can still use them, but Oracle does not recommend their use because newer and better methods exist. Liıke many other deprecated features in Oracle, LONG and LONG RAW still exist because some older applications still use them.

24

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

• LONG

– Up to 2GB
– Replaced by CLOB

• LONG RAW
– Up to 2GB
– Replaced by BLOB

The New Way
• CLOB

– Up to 4GB
– Replaces LONG

• BLOB and BFILE
– Up to 4GB
– Replace LONG RAW
– Inside or outside the

database

A table can contain only one LONG or LONG RAW column, but
as many LOB columns as needed.

CLOB and BLOB data are stored in the database (“internal
LOBs”). BFILEs are stored outside the database (“external
LOBs”) in separate files.

The Old Way

Presenter
Presentation Notes
Students will learn more about BFILEs in the next lesson.

25

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

You can convert LONG columns to CLOBs (and LONG RAW
columns to BLOBs) using ALTER TABLE:

For example, to convert the RESUMES column in the EMPLOYEES
table from LONG to CLOB you enter:

ALTER TABLE table_name
MODIFY (long_col_name {CLOB | BLOB});

ALTER TABLE employees
MODIFY (resumes CLOB);

Converting LONG to CLOB

27

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

• Text only
• No fonts, no bold, no italic, no formatting, nothing fancy.
• Very useful for storing XML, HTML, DDL, PL/SQL, scripts

and other source code for programs
• Can use all the built-in SQL character functions such as

SUBSTR, LENGTH.

BLOB column
• Can store absolutely anything (e.g. ZIP, EXE, DLL file types).
• A few file types such as PDF, BMP, GIF, JPEG, MP3, WAV

(usually the ones known by web browsers) can be displayed
by Oracle Application Express.

CLOB column

28

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

Unlike other data types in which the column value is stored inline
as part of the main row data, a LOB column value is stored in a
separate area of the database with a pointer to it from the main
table row.

LOB locator

LOB column
of a table

LOB value

We say that the LOB data value is stored out-of-line. The
pointer from the main row is called a locator.

How and where is LOB data stored?

Presenter
Presentation Notes
Components of a LOB

There are two distinct parts to a LOB:

LOB value: The data that constitutes the real object being stored

LOB locator: A pointer to the location of the LOB value stored in the table row

Regardless of where the value of a LOB is stored, a locator is stored in the row. You can think of a LOB locator as a pointer to the actual location of the LOB value.

A LOB column does not contain the data; it contains the locator of the LOB value.

When a user creates an internal LOB, the value is stored elsewhere and a locator to the out-of-line LOB value is placed in the LOB column of the corresponding row in the table. External LOBs (BFILES) store the data outside the database, so only a locator to the LOB value is stored in the database.

29

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

Like any other newly added column, the LOB value is NULL.
This means that the column data does not exist, and the locator
is set to NULL.

ALTER TABLE employees ADD (annual_evals CLOB);

ALTER TABLE employees ADD (badge_photo BLOB);

Adding a LOB column to a table:

30

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

Now we can insert the data values using normal DML
statements:

Each of these statements creates the out-of-line data values
elsewhere in the database, and creates a locator value in the
main table row which points to the data value.

UPDATE employees
SET annual_evals = 'Evaluation Date: 14 September

2005. Performance Rating: Good ... '
WHERE employee_id = 100;

INSERT INTO employees (employee_id, ..., annual_evals)
VALUES (272, ..., 'New Employee; evaluation details will

be added later');

Adding CLOB data to a column:

Presenter
Presentation Notes
EMPTY_CLOB and EMPTY_BLOB are built-in SQL functions, just like UPPER, TO_CHAR and so on, except that they can only be used in DML statements because they modify the table. The functions allocate initial space in the database to hold the data value, and update the locator to point to this space. Then we load the data value.

This two-step method is necessary because the data is stored out-of-line, and we cannot access it in any way until we have created a pointer to it (ie initilized the locator).

31

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

We can SELECT a CLOB column like any other column:

SELECT annual_evals FROM employees
WHERE employee_id = 100 ;

But these values can be very large. Reading the whole of a 4GB
LOB value would take a long time and use a lot of memory. And
maybe we only want to see part of the value anyway:

SELECT SUBSTR(annual_evals,2001,1000)
FROM employees WHERE employee_id = 100;

Reading CLOB data from the table:

Presenter
Presentation Notes
We can use normal SQL character functions – UPPER, LOWER, INITCAP, SUBSTR, INSTR and so on – when SELECTing CLOB columns.

32

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

Updating CLOB data:

But we cannot use SQL functions like SUBSTR in UPDATE or
INSERT statements:

UPDATE employees
SET SUBSTR(annual_evals,2001,8) = 'NEW TEXT' -- ERROR
WHERE employee_id = 100;

We manipulate large LOB values by using the DBMS_LOB
PL/SQL package. And we cannot use DBMS_LOB directly in a
SQL SELECT or DML statement. We can do it only from inside a
PL/SQL block.

Presenter
Presentation Notes
Instructor Note

We have to use PL/SQL because calls to DBMS_LOB require passing the locator as a parameter. Therefore we need to declare a PL/SQL variable to store the locator value.

33

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

Using DBMS_LOB, Step 1: Initializing the Locator:

When we use DBMS_LOB, the locator must be initialized before
the data value can be stored. We do this using the
EMPTY_CLOB() and EMPTY_BLOB() SQL functions:

EMPTY_CLOB() and EMPTY_BLOB() are built-in SQL functions,
just like UPPER, TO_CHAR and so on, except that they can only
be used in DML statements because they modify the table. The
functions allocate initial space elsewhere in the database to hold
the data value, and update the locator to point to this space.

UPDATE employees
SET annual_evals = EMPTY_CLOB(),

badge_photo = EMPTY_BLOB();

Presenter
Presentation Notes
Instructor Note

Point out that the brackets are needed: EMPTY_CLOB(), not EMPTY_CLOB.

Despite the word EMPTY_ in the function names, these two functions do not set the LOB column to null (it is automatically null when the column is first added). These functions place a real non-null value in the column. This value is a locator (pointer) to the space elsewhere in the database where the large LOB value will be stored.

The EMPTY_ functions are needed when using DBMS_LOB to store the LOB data. They are NOT needed when using SQL INSERT or UPDATE statements to store the LOB data.

34

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

Using DBMS_LOB, Step 2: Populating a CLOB column:

DECLARE
v_lobloc CLOB; -- this will store the LOB locator
v_text VARCHAR2(32767);
v_length INTEGER;
v_offset INTEGER;

BEGIN
SELECT annual_evals INTO v_lobloc FROM employees
WHERE employee_id = 100 FOR UPDATE;

FOR i IN 1..3 LOOP
v_text := 'The next piece of text number ' || i;
v_offset := DBMS_LOB.GETLENGTH(v_lobloc)+ 2;
v_length := LENGTH(v_text);
DBMS_LOB.WRITE(v_lobloc,v_length,v_offset,v_text);

END LOOP;
END;

Presenter
Presentation Notes
Instructor Note

Go through this carefully with the students, pointing out the following:

1. A CLOB, BLOB or BFILE variable in PL/SQL stores the LOB locator, not the data value.

2. The SELECT statement reads the CLOB locator for a specific employee into the PL/SQL CLOB variable. This locator is used as the first parameter in all calls to DBMS_LOB.

3. The LOOP … END LOOP; repeatedly appends a new piece of text to the existing CLOB value, until the next piece is found to be null (LENGTH = 0). Within the loop, the GETLENGTH function returns the size of the existing value into v_offset; the WRITE procedure then appends a new piece of text, starting with the first byte after the existing text.

The actual values of the pieces of text in V_TEXT would be inserted programmatically, not coded as a literal as shown here. In fact, if you execute the anonymous block shown in the slide, it will loop forever – or until 4GB of data has been loaded.

35

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

Reading BLOB column data using DBMS_LOB:

BLOB data cannot be displayed in Oracle Application Express, but
we can see that the data exists by finding and displaying its length:

DECLARE
CURSOR country_curs IS
SELECT country_id, country_name, flag
FROM wf_countries WHERE country_name LIKE 'A%';

v_length NUMBER;
BEGIN
FOR country_rec IN country_curs LOOP
v_length := DBMS_LOB.GETLENGTH(country_rec.flag);
DBMS_OUTPUT.PUT_LINE(country_rec.country_id ||' '

||country_rec.country_name||' '||v_length);
END LOOP;

END;

Presenter
Presentation Notes
Instructor Note

This block retrieves and displays the country_id, country_name and length in bytes of the flag (a BLOB column) for countries whose names begin with 'A'. The output is shown on the next slide.

Copyright © 2009, Oracle. All rights reserved.

Managing BFILES

37

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

A BFILE is like a CLOB or BLOB, except that its value is
stored outside the database in a separate file. The
database holds a pointer to the external file.

Movie (BFILE)

The data can be text
(like a CLOB) or
multimedia (like a
BLOB).

The external file can
be on a normal
computer disk, or on a
CD or DVD etc. as
long as it is accessible
from the database.

What Is a BFILE?

Presenter
Presentation Notes
A single BFILE cannot span more than one device, for example a movie must be all on a single DVD.

38

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

Because the BFILE data is stored outside the database:
• It can be read but not modified, therefore it must be created
outside Oracle
• It cannot have normal database privileges granted on it
• Normal SQL statements cannot be used on it.
• All data access is through the DBMS_LOB package.

How is a BFILE different from CLOBs and BLOBs?

Presenter
Presentation Notes
“Created outside Oracle”: for example, we could take a set of DVDs each containing a movie, and copy them to our computer’s hard disk using normal operating system commands, creating a set of files in one or more operating system directories. For example on Windows:

C:\mymovies\titanic.avi

C:\mymovies\eight_mile.avi and so on.

39

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

• If the media already exists (e.g. CD or DVD), then why
bother re-copying it into the database (into a BLOB column)?

• If the media is already read-only (e.g. CD or DVD), then the
BFILE being read-only is not an issue.

When NOT to use a BFILE?
• If it doesn’t fit! Oracle LOB values cannot be more than 4GB.
• How big is a DVD? Up to 4.7 GB.
• How big is a Blu-ray or HD-DVD? From 15 to 50 GB.

When to use a BFILE?

40

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

A New Database Object: DIRECTORY

We need a way of specifying which operating system
directories (folders) contain our BFILEs, and also controlling
which Oracle users are allowed to read the BFILE data. To do
this, we create a DIRECTORY.

A DIRECTORY is a pointer from the database to an operating
system directory (folder) where BFILEs are stored.

Presenter
Presentation Notes
Instructor Note: directories can be used in other cases where Oracle needs a pointer to files outside the database, for example when using the UTL_FILE_DIR package. This was mentioned in Section 9 Lesson 6.

41

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

Creating and Managing Directories
Create a directory to point to an external location where BFILEs
are stored, then allow everyone to use it:

Later we move our movie files to a different location. We must
update the directory pointer:

CREATE DIRECTORY movie_dir AS 'c:\mymovies';

GRANT READ ON DIRECTORY movie_dir TO PUBLIC;

ALTER DIRECTORY movie_dir AS 'c:\latermovies';

Presenter
Presentation Notes
ALTER DIRECTORY only updates the pointer. The files themselves must be moved by Operating System commands, for example cut/paste on Wındows.

42

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

Viewing Directories in the Data Dictionary
Unlike most database objects, directories do not belong to any
schema, so there is no USER_DIRECTORIES dictionary view.
Instead, we use ALL_DIRECTORIES:

SELECT directory_name, directory_path
FROM all_directories;

DIRECTORY_NAME DIRECTORY_PATH

WF_FLAGS /u02/webapps/oa1bprd_dir

Presenter
Presentation Notes

43

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

We add the column like any other column:

Then we populate it with a locator value which points to a specific
file in a specific directory, using the DIRECTORY pointer we
created earlier and the inbuilt BFILENAME function, within a
PL/SQL block.

ALTER TABLE employees ADD (movie BFILE);

Adding and Populating a BFILE column

Presenter
Presentation Notes
A BFILE locator column has two components: the directory alias for the Operating System directory where the file is stored, and the name of the file ıtself.

44

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

DECLARE
v_locator BFILE;

BEGIN
v_locator := BFILENAME('MOVIE_DIR','titanic.avi');
IF DBMS_LOB.FILEEXISTS(v_locator) = 1 THEN
UPDATE employees SET movie = v_locator
WHERE employee_id = 100;

ELSE
RAISE_APPLICATION_ERROR
(-20210,'This BFILE does not exist');

END IF;
END;

Adding and Populating a BFILE column continued

Presenter
Presentation Notes
Go though this carefully:

Step 1 declares a PL/SQL variable of type BFILE to hold a locator value

Step 2 populates the BFILE variable with the location and name of a specific BFILE (ie a specific movie) using the BFILENAME function.

Step 3: the DBMS_LOB.FILEEXISTS function checks the Operating System to see if the file is really there. It returns 1 if the file exists, and 0 if it does not (note: it does not use the BOOLEAN type). If the file exists, we must open it before use using DBMS_LOB.FILEOPEN.

Step 4 updates the table column with the locator value and then closes the file.

45

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

Reading BFILE Locator Values

We can read the locator value using DBMS_LOB.FILEGETNAME:

DECLARE
v_locator BFILE;
v_directory VARCHAR2(30);
v_filename VARCHAR2(50);

BEGIN
SELECT movie INTO v_locator
FROM employees WHERE employee_id = 100;

DBMS_LOB.FILEGETNAME(v_locator,v_directory,v_filename);
DBMS_OUTPUT.PUT_LINE(v_directory|| ' ' ||v_filename);

END;

Presenter
Presentation Notes
Instructor Note

A locator value in a BFILE column has two components: the DIRECTORY alias and the filename. However, it is stored in a binary format which cannot be SELECTed directly. We use the FILEGETNAME procedure to extract its two components into VARCHAR2 variables.

46

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

Reading BFILE Data Values

We cannot display the BFILE data in Application Express.

DECLARE
v_locator BFILE;
v_raw_data RAW(32767);
v_offset INTEGER := 1;

BEGIN
SELECT movie INTO v_locator

FROM employees WHERE employee_id = 100;
DBMS_LOB.FILEOPEN(v_locator);
FOR i IN 1..100 LOOP

DBMS_LOB.READ(v_locator,32000,v_offset,v_raw_data);
v_offset := v_offset + 32000;

END LOOP;
DBMS_LOB.FILECLOSE(v_locator);

END;

Presenter
Presentation Notes
Instructor Note

Go through this carefully:

Step 1: the locator value is read into the BFILE variable, as on the previous slide.

Step 2: All external files must be OPENed before they can be read, and CLOSEd when we have finished with them. The FILEOPEN procedure opens the file.

Step 3: Each time round the loop, the READ procedure reads the next 32000 bytes of BFILE data into a RAW variable (remember BFILEs usually contain binary data, not text). The block in the slide will (in total) read the first 32000 x 100 = 3200000 bytes of the BFILE data.

Step 4: the FILECLOSE procedure closes the BFILE.

Copyright © 2009, Oracle. All rights reserved.

User-Defined Records

48

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

The EMPLOYEES table contains eleven columns. We need to
code a single-row SELECT in our PL/SQL subprogram.
CREATE OR REPLACE PROCEDURE query_one_emp

(p_emp_id IN employees.employee_id%TYPE) IS
v_employee_id employees.employee_id%TYPE;
v_first_name employees.first_name%TYPE;
... -- seven more scalar variables here !!
v_manager_id employees.manager_id%TYPE;
v_department_id employees.department_id%TYPE;

BEGIN
SELECT employee_id, first_name, ..., department_id
INTO v_employee_id, v_first_name, ..., v_department_id
FROM employees
WHERE employee_id = p_employee_id;

EXCEPTION
WHEN no_data_found THEN ...;

END;

A Problem Scenario

Presenter
Presentation Notes
Instructor Note:

This and the next few slides show that a record declared with %ROWTYPE can be based on a table rather than on a cursor. Students will probably find this easy to understand, but it is a necessary prerequisite for the more complex record structures later in the lesson.

49

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

Fortunately we don’t have to do all this. Instead, we declare and
use a PL/SQL record.

CREATE OR REPLACE PROCEDURE query_one_emp
(p_emp_id IN employees.employee_id%TYPE,
p_first_name OUT employees.first_name%TYPE,
... – seven more OUT parameters here !!
p_manager_id OUT employees.manager_id%TYPE,
p_department_id OUT employees.department_id%TYPE)

IS
v_employee_id employees.employee_id%TYPE;
v_first_name employees.first_name%TYPE;
...

And how can we return the results to the calling
environment?

50

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

We can use %ROWTYPE with records just as we can with cursors.

CREATE OR REPLACE PROCEDURE query_one_emp
(p_emp_id IN employees.employee_id%TYPE,
p_emp_record OUT employees%ROWTYPE)

IS
BEGIN
SELECT * INTO p_emp_record
FROM employees
WHERE employee_id = p_emp_id;

EXCEPTION
WHEN no_data_found THEN ...;

END;

Using a PL/SQL Record

Presenter
Presentation Notes
As well as being much simpler code: now what happens if a column is added to or dropped from the table? No changes are needed to the procedure.

Instructor Note: PL/SQL allows any named variable – scalar or composite - to be passed as a parameter.

51

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

A PL/SQL record is a composite data type consisting of a group
of related data items stored as fields, each with its own name and
data type. We can refer to the whole record by its name, and/or
to individual fields by their names.

Using %ROWTYPE implicitly declares a record whose fields match
the corresponding columns by name and data type. We can
reference individual fields by prefixing the field-name with the
record-name:

...
IF p_emp_record.salary > 25000 THEN

RAISE_APPLICATION_ERROR
(-20104,'This employee earns too much!');

END IF;
...

PL/SQL Records

52

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

But what if our example procedure SELECTs from a join of
several tables?

We can declare our own record structures containing any fields
we like. A PL/SQL record:

• must contain one or more components (fields) of any scalar
or composite type

• is not necessarily the same as rows in a database table
• can be assigned initial default values and can be constrained

as NOT NULL
• can be a component of another record (nested records)

Defining Our Own Records

Presenter
Presentation Notes
Obviously we cannot declare a record as: p_record_name bits_of_table1_plus_bits_of_table2_plus….%ROWTYPE ! We could create a database view to implement the join, and then use %ROWTYPE on the view. But as we have seen, views have limitations, for example complex views may not be updateable.

Instructor Note: stress that records are not the same as rows in a table, even if (using %ROWTYPE) their structure exactly matches a table row. Table rows are stored on disk and are permanent; the data in a record is held in a memory structure (like any other program variable) and persists only for the duration of the session.

53

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

A record structure is a composite data type, just as DATE,
VARCHAR2, NUMBER and so on are Oracle-defined scalar data
types. We declare the type and then declare one or more
variables of that type.

field_declaration can be of any PL/SQL data type, including
%TYPE, %ROWTYPE and RECORD.

TYPE type_name IS RECORD
(field_declaration[,field_declaration]...);

identifier type_name;

Creating a User-Defined PL/SQL Record

Presenter
Presentation Notes
A field declaration can be of any PL/SQL data type, including %TYPE, %ROWTYPE and RECORD.

Instructor Note: the Oracle-predefined scalar data types such as VARCHAR2, DATE, NUMBER and so on, are actually TYPEs declared automatically (with global scope) in every Oracle database. If you have DBA privileges, try the following:

SELECT type_name FROM dba_types WHERE predefined = ‘YES’;

54

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

DECLARE
TYPE person_type IS RECORD

(first_name employees.first_name%TYPE,
last_name employees.last_name%TYPE,
gender VARCHAR2(6));

TYPE employee_type IS RECORD
(job_id VARCHAR2(10),
salary NUMBER(8,2),
person_data person_type);

person_rec person_type;
employee_rec employee_type;

BEGIN
IF person_rec.last_name ... END IF;
employee_rec.person_data.last_name := ...;

User-Defined PL/SQL Records: Example

Presenter
Presentation Notes
The slide example declares two record types and a record based on each of the types. The highlights show that:

Types can contain other types (person_data is a field in employee_type)

When types contain other types, we must use multiple levels of dot-prefixing to reference individual scalar fields (employee_rec.person_data.last_name).

55

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

DECLARE
TYPE person_type IS RECORD

(first_name employees.first_name%TYPE,
last_name employees.last_name%TYPE,
gender VARCHAR2(6));

employee_rec person_type;
vendor_rec person_type;
customer_rec person_type;
...

Even though the type is based loosely on employees, there
could be other records that are of the same type from
different tables.

Reusing PL/SQL Types for Multiple Records continued

Presenter
Presentation Notes
The slide example declares two record types and a record based on each of the types. The highlights show that:

Types can contain other types (person_data is a field in employee_type)

When types contain other types, we must use multiple levels of dot-prefixing to reference individual scalar fields (employee_rec.person_data.last_name).

56

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

They are composite variables, and can be declared anywhere
that scalar variables can be declared: in anonymous blocks,
procedures, functions, package specifications (global), package
bodies (local), triggers, and so on.

Their scope and visibility follows the same rules as for scalar
variables. For example, a type could be declared in a package
specification. Records based on that type could be declared and
used anywhere within the package, and also in the calling
environment.

Where Can Types and Records be Declared and Used?

Presenter
Presentation Notes
Recall that declarations in a package specification are visible to the calling environment, not just within the package itself.

57

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

CREATE OR REPLACE PACKAGE pers_pack IS
TYPE person_type IS RECORD

(first_name employees.first_name%TYPE,
last_name employees.last_name%TYPE,
gender VARCHAR2(6));

PROCEDURE pers_proc (p_pers_rec OUT person_type);
END pers_pack;
CREATE OR REPLACE PACKAGE BODY pers_pack IS
PROCEDURE pers_proc (p_pers_rec OUT person_type)

IS
v_pers_rec person_type;

BEGIN
SELECT first_name, last_name, 'Female'
INTO v_pers_rec
FROM employees WHERE employee_id = 101;

p_pers_rec := v_pers_rec;
END pers_proc;

END pers_pack;

Where Can Types and Records be Declared and Used
Cont

Presenter
Presentation Notes
The package specification declares a record type person_type. Two records are declared based on this type: p_pers_rec is an OUT formal parameter from the procedure, and v_pers_rec is a local variable within the procedure.

Instructor Note: the EXCEPTION section has been omitted from the package body to save space on the slide.

58

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

Now invoke the package procedure from another PL/SQL block
(it could be a Java, C or other language application):

DECLARE
a_pers_rec pers_pack.person_type;

BEGIN
pers_pack.pers_proc(a_pers_rec);
DBMS_OUTPUT.PUT_LINE

(a_pers_rec.first_name || a_pers_rec.gender);
END;

Visibility and Scope of Records: Example

Presenter
Presentation Notes
Step 1 declares a record based on the record type declared globally in the package specification

Step 2 passes the record-name as an actual parameter to the package procedure.

Copyright © 2009, Oracle. All rights reserved.

Index by Tables

60

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

A collection is a set of occurrences of the same kind of data. For
example, the set of all employees’ last names. Or, the set of all
department rows.
In PL/SQL, a collection is a type of composite variable, just like
user-defined records and %ROWTYPE. There are two kinds of
collection:
• an INDEX BY TABLE, which is based on a single field or
column, for example on the last_name column of EMPLOYEES
• an INDEX BY TABLE OF RECORDS, which is based on a
composite record type, for example on the whole DEPARTMENTS
row.
Because collections are PL/SQL variables, their data is stored in
a private memory area like any other PL/SQL variable.

What is a Collection?

Presenter
Presentation Notes
Stress that an INDEX BY Table is NOT a database table. Their data is stored in memory, not on disk in the database. Therefore transaction control statements such as COMMIT and ROLLBACK have no meaning for INDEX BY tables. If it won’t fit in memory, it spills onto the TEMP tablespace of the database.

61

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

We will need to able to distinguish between individual values in
the table, so that we can reference them individually. Therefore,
every INDEX BY table automatically has a numeric primary key,
which serves as an index into the table.

The primary key must be of datatype BINARY_INTEGER (the
default) or PLS_INTEGER. The primary key can be negative as
well as positive.

Since it is only an integer, some numeric data such as phone
number may exceed the allowable precision. For example
8005551212 won’t fit.

An INDEX BY Table Has a Primary Key

Presenter
Presentation Notes
BINARY_INTEGER is faster than PLS_INTEGER and is therefore recommended. The magnitude range of a BINARY_INTEGER is -2147483647 to

+2147483647, so we can store many millions of entries in an INDEX BY table … as long as we have enough memory to hold them!

In Oracle 10g, INDEX BY tables can be string-indexed by VARCHAR2.

62

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

INDEX BY Table Structure

The primary key must be numeric, but could be meaningful
business data, for example an employee id.

Primary Key Value
... ...

1 Jones
5 Smith
3 Maduro

... ...

BINARY_INTEGER Scalar

Presenter
Presentation Notes
Point out that the primary key is not like a sequence. Values are not generated automatically, but must be specifically inserted. Therefore some values can be missing (“sparse”) or out of order, as the slide shows.

63

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

Like user-defined records, we must first declare a type and then
declare “real” variables of that type.

This example declares two INDEX BY tables of the same type.

DECLARE
TYPE t_names IS TABLE OF VARCHAR2(50)

INDEX BY BINARY_INTEGER;

last_names_tab t_names;
first_names_tab t_names;

Declaring an INDEX BY Table

Presenter
Presentation Notes
The slide example uses an anonymous block, but INDEX BY tables can be declared in any kind of PL/SQL subprogram.

64

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

This example populates the INDEX BY table with employees’ last
names, using employee_id as the primary key.

DECLARE
TYPE t_names IS TABLE OF VARCHAR2(50)

INDEX BY BINARY_INTEGER;
last_names_tab t_names;

BEGIN
FOR emp_rec IN (SELECT employee_id, last_name

FROM employees) LOOP
last_names_tab(emp_rec.employee_id) := emp_rec.last_name;

END LOOP;
END;

Populating an INDEX BY Table:

Presenter
Presentation Notes
If we wanted to assign the primary keys incrementally (like a sequence) instead of using the employee_id, we would code:

DECLARE� TYPE t_names IS TABLE OF VARCHAR2(50)� INDEX BY BINARY_INTEGER;

 last_names_tab t_names;

 v_count BINARY_INTEGER := 0;

BEGIN

FOR emp_rec IN (SELECT employee_id, last_name

 FROM employees) LOOP

 v_count := v_count + 1;

 last_names_tab(v_count) := emp_rec.last_name;

 END LOOP;

END;

65

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

We can use built-in procedures and functions (called
methods) to reference single elements of the table, or to read
successive elements. The available methods are:

We use these methods by dot-prefixing the method-name
with the table-name.

– PRIOR
– NEXT
– DELETE
– TRIM

– EXISTS

– COUNT

– FIRST and LAST

Using INDEX BY Table Methods

66

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

Important INDEX BY Table Methods

COUNT returns the number of elements in the table:

EXISTS(N) returns TRUE if the Nth element exists

FIRST returns the smallest index number in the table
LAST returns the largest index number in the table

v_count := last_names_tab.COUNT;

IF last_names_tab.EXISTS(27) THEN ...

v_lowest_number := last_names_tab.FIRST;
v_highest_number := last_names_tab.LAST;

67

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

DECLARE
TYPE t_names IS TABLE OF VARCHAR2(50)

INDEX BY BINARY_INTEGER;
last_names_tab t_names;
v_count INTEGER;

BEGIN
-- populate the INDEX BY table with employee data as before
v_count := last_names_tab.COUNT; --1
FOR i IN last_names_tab.FIRST .. last_names_tab.LAST --2
LOOP
IF last_names_tab.EXISTS(i) THEN --3
DBMS_OUTPUT.PUT_LINE(last_names_tab(i));

END IF;
END LOOP;

END;

Using INDEX BY Table Methods

Presenter
Presentation Notes
The COUNT method returns the number of elements in the table. FIRST and LAST return the lowest and highest primary key values in the table. EXISTS(n) returns TRUE if an element with primary key = n exists.

Ask students: what output would be produced when this block is executed? Answer: all the employee last names, in ascending employee_id sequence.

Instructor Note: A full discussion of methods is beyond the scope of this course.

68

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

Even though an index by table can only have one data field, that
field can a composite data type such as a RECORD.

The record can be %ROWTYPE or a user-defined record.

This example declares an INDEX BY table to store complete
employee rows:

DECLARE
TYPE t_emprec IS TABLE OF employees%ROWTYPE

INDEX BY BINARY_INTEGER;
employees_tab t_emprec;

INDEX BY TABLE OF RECORDS

Presenter
Presentation Notes
An INDEX BY table of records is just like any other INDEX BY table, except that the non-primary-key field is a composite (a record) rather than a scalar. We populate it and use methods such as COUNT, EXISTS and FIRST on it exactly as before.

69

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

DECLARE
TYPE t_emprec IS TABLE OF employees%ROWTYPE

INDEX BY BINARY_INTEGER;
employees_tab t_emprec;
BEGIN
FOR emp_rec IN (SELECT * FROM employees) LOOP
employees_tab(emp_rec.employee_id) := emp_rec;
END LOOP;

FOR i IN employees_tab.FIRST .. employees_tab.LAST
LOOP
IF employees_tab.EXISTS(i) THEN

DBMS_OUTPUT.PUT_LINE(employees_tab(i).first_name);
END IF;
END LOOP;

END;

Using an INDEX BY Table of Records

Presenter
Presentation Notes
--1 populates the table with whole EMPLOYEE rows.

--2 displays the first_name field from each table element in turn. Note the syntax: table_name(primary-key).field-name, NOT table_name.field-name(primary-key).

Copyright © 2009, Oracle. All rights reserved.

Understanding Dependencies

71

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

Dependent and Referenced Objects
• Some objects reference other objects as part of their definitions.

For example, a stored procedure could contain a SELECT
statement that selects columns from a table. For this reason, the
stored procedure is called a dependent object, whereas the table is
called a referenced object.

Dependency Issues
• If you alter the definition of a referenced object, dependent objects

may or may not continue to work properly. For example, if the table
definition is changed, the procedure may or may not continue to
work without error.

• The Oracle server automatically records dependencies among
objects. To manage dependencies, all schema objects have a
status (valid or invalid) that is recorded in the data dictionary, and
you can view the status in the USER_OBJECTS data dictionary
view.

Understanding Dependencies

72

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

View or
procedure

Direct
dependency

Referenced

Indirect
dependency

Direct
dependency

Dependent

Table

Referenced

xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv

Procedure

Dependent

Dependencies

Presenter
Presentation Notes
Dependent and Referenced Objects (continued)

A procedure or function can directly or indirectly (through an intermediate view, procedure, function, or packaged procedure or function) reference the following objects:

Tables

Views

Sequences

Procedures

Functions

Packaged procedures or functions

73

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

View

Database trigger

Procedure

Function

Package body

Package specification

User-defined object
and collection types

Function

Package specification

Procedure

Sequence

Synonym

Table

View

User-defined object
and collection types

Referenced objectsDependent objects

Dependencies Summarized

74

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

In the case of local dependencies, the objects are on the same
node in the same database. The Oracle server automatically
manages all local dependencies, using the database’s internal
“depends-on” table. When a referenced object is modified, the
dependent objects are invalidated.

xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv

Procedure View

Local references

Procedure Table
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx

Direct local
dependency

Local Dependencies

Presenter
Presentation Notes
Managing Local Dependencies

If the referenced object is in a different database, the dependency is called a remote dependency. Because the two database have separate data dictionaries, some of the features described in this lesson work differently for remote dependencies.

75

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
vvvvvvvvvvvvvv

Procedure View

Local references

Procedure Table
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv

Direct local
dependency

The Oracle server implicitly attempts to recompile any
INVALID object when the object is next called.

Definition
change

INVALIDINVALIDINVALID

Local Dependencies continued

Presenter
Presentation Notes
Managing Local Dependencies (continued)

Assume that the structure of the table on which a view is based is modified. When you describe the view by using the DESCRIBE command, you get an error message that states that the object is invalid to describe. This is because DESCRIBE is not a SQL command and, at this stage, the view is invalid because the structure of its base table is changed. If you query the view now, then the view is recompiled automatically and you can see the result if it is successfully recompiled.

Although this example discusses automatic recompilation of a view, the same mechanisms apply to other dependent objects such as subprograms.

76

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

xxxxxxxxxxxxxxxxxxxxx
vvvvvvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvvvvvv
vvvvvvxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
vvvvvvvvvvvvvvvvvvvvv

xxxxxxxxxxxxxxxxxxxxx
vvvvvvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvvvvvv
vvvvvvxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
vvvvvvvvvvvvvvvvvvvvv

ADD_EMP
procedure

QUERY_EMP
procedure

EMPLOYEES table

EMP_VW view

…

EMPLOYEE_ID LAST_NAME FIRST_NAME EMAIL PHONE_
100 King Steven SKING 515.123

101 Kochhar Neena NKOCHHAR 515.123

102 De Haan Lex LDEHAAN 515.123

103 Hunold Alexander AHUNOLD 590.423

104 Ernst Bruce BERNST 590.423

EMPLOYEE_ID LAST_NAME FIRST_NAME EMAIL DEPA
100 King Steven SKING 90

101 Kochhar Neena NKOCHHAR 90

102 De Haan Lex LDEHAAN 90

103 Hunold Alexander AHUNOLD 60

104 Ernst Bruce BERNST 60

A Scenario of Local Dependencies

Presenter
Presentation Notes
Example

The QUERY_EMP procedure directly references the EMPLOYEES table. The ADD_EMP procedure updates the EMPLOYEES table indirectly by using the EMP_VW simple view.

Ask students: In each of the following cases, will the ADD_EMP procedure be invalidated, and will it successfully recompile when next invoked?

1. The internal logic of the QUERY_EMP procedure is modified.

 A new column is added to the EMPLOYEES table.

 The EMP_VW view is dropped.

Answers: 1. ADD_EMP will not be invalidated because it is not directly or indirectly dependent on QUERY_EMP.

		2. ADD_EMP will be invalidated because it is indirectly dependent on EMPLOYEES. When ADD_EMP is next invoked, it will recompile successfully (and so will EMP_VW).

		3. ADD_EMP will be invalidated because it is directly dependent on EMP_VW. When next invoked, it will not recompile successfully because its referenced object (EMP_VW) no longer exists.

77

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

Direct Dependencies can also be viewed in Application Express:
SQL Workshop -> Object Browser -> choose an object, then click
the Dependencies tab.

SELECT name, type, referenced_name, referenced_type
FROM USER_DEPENDENCIES
WHERE referenced_name IN ('EMPLOYEES','EMP_VW');

NAME TYPE REFERENCED_NAME REFERENCED_TYPE

ADD_EMP PROCEDURE EMP_VW VIEW

EMP_VW VIEW EMPLOYEES TABLE

QUERY_EMP PROCEDURE EMPLOYEES TABLE

Displaying Direct Dependencies by Using
USER_DEPENDENCIES

Presenter
Presentation Notes
Displaying Direct Dependencies by Using USER_DEPENDENCIES

Determine which database objects to recompile manually by displaying direct dependencies from the USER_DEPENDENCIES data dictionary view.

Examine the ALL_DEPENDENCIES and DBA_DEPENDENCIES views, each of which contains the additional column OWNER, which references the owner of the object.

Instructor Note: the *_DEPENDENCIES views do not show indirect dependencies. For these we need to run the utldtreel.sql script as shown in the next slide.

78

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

Run the script utldtree.sql that creates the objects that
enable you to display the direct and indirect dependencies.
This script creates four objects:
• A table deptree_temptab to hold dependency data
• A procedure deptree_fill to populate the table
• Two views deptree and ideptree to select and format

dependency data from the populated table.

For each object whose dependencies you want to see:
1. Execute the DEPTREE_FILL procedure.

BEGIN deptree_fill('TABLE','SCOTT','EMPLOYEES'); END;

Displaying Direct and Indirect Dependencies

Presenter
Presentation Notes
Displaying Direct and Indirect Dependencies by Using Views Provided �by Oracle

Display direct and indirect dependencies from additional user views called DEPTREE and IDEPTREE; these views are provided by Oracle.

Example

1. 	Make sure that the utldtree.sql script has been executed. This script is located in the $ORACLE_HOME/rdbms/admin folder. (This script is supplied in the lab folder of your class files.)

Populate the DEPTREE_TEMPTAB table with information for a particular referenced object by invoking the DEPTREE_FILL procedure. There are three parameters for this procedure:

object_type: Type of the referenced object

object_owner: Schema of the referenced object

object_name: Name of the referenced object

79

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

2. Display the dependency data using the DEPTREE view

In this example, ADD_EMP is directly dependent on EMP_VW,
which in turn is directly dependent on EMPLOYEES (look at the
NESTED_LEVEL column).

SELECT nested_level, type, name
FROM deptree
ORDER BY seq#;

NESTED_LEVEL TYPE NAME
0 TABLE EMPLOYEES

1 VIEW EMP_VW

2 PROCEDURE ADD_EMP

1 PROCEDURE QUERY_EMP

Displaying Dependencies: the DEPTREE view

Presenter
Presentation Notes
Displaying Dependencies

Example

Display a tabular representation of all dependent objects by querying the DEPTREE view.

Display an indented representation of the same information by querying the IDEPTREE view, which consists of a single column named DEPENDENCIES.

For example,

 SELECT *

 FROM ideptree;

 provides a single column of indented output of the dependencies in a hierarchical structure.

80

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

If the EMPLOYEES table is altered, both procedures will be marked
invalid in the data dictionary. However, if the RAISE_SAL procedure
is altered, only the REDUCE_SAL procedure will be marked invalid.

EMPLOYEES table

REDUCE_SAL
procedure

RAISE_SAL
procedure

xxxxxxxxxxxxxxxxxxxxx
vvvvvvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvvvvvv
vvvvvvxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
vvvvvvvvvvvvvvvvvvvvv

xxxxxxxxxxxxxxxxxxxx
vvvvvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvvvvv
Vvvvvvvvvvvvvvvvvvvv
Vvvvvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvvvvv

EMPLOYEE_ID LAST_NAME JOB_ID SALARY

100 King AD_PRES 24000

101 Kochhar AD_VP 17000

102 De Haan AD_VP 17000

103 Hunold IT_PROG 9000

104 Ernst IT_PROG 6000

Another Scenario of Local Dependencies

Presenter
Presentation Notes
Another Scenario of Local Dependencies

Predict the effect that a change in the definition of a procedure has on the recompilation of a dependent procedure.

Suppose that the RAISE_SAL procedure updates the EMPLOYEES table directly, and that the REDUCE_SAL procedure updates the EMPLOYEES table indirectly by way of RAISE_SAL.

In each of the following cases, will the REDUCE_SAL procedure successfully recompile?

1. The internal logic of the RAISE_SAL procedure is modified.

 One of the formal parameters to the RAISE_SAL procedure is eliminated.

Answers: 1. REDUCE_SAL will successfully recompile because its expected parameters have not changed, therefore its invocation from REDUCE_SAL is still valid.

		2. REDUCE_SAL will not successfully recompile because one of its actual parameters in its call to RAISE_SAL no longer exists.

81

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

If dependent objects references a public synonym, and a new object is
created in your schema with the same name as the synonym, the
dependent objects are invalidated.

QUERY_EMP
procedure

EMPLOYEES public synonym

EMPLOYEES
table

…

…

xxxxxxxxxxxxxxxxxxxxx
vvvvvvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvvvvvv
vvvvvvxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
vvvvvvvvvvvvvvvvvvvvv

If QUERY_EMP is
recompiled it will reference
the EMPLOYEES table, not
the original public
synonym with the same
name.

EMPLOYEE_ID LAST_NAME JOB_ID SALARY

100 King AD_PRES 24000

101 Kochhar AD_VP 17000

102 De Haan AD_VP 17000

103 Hunold IT_PROG 9000

104 Ernst IT_PROG 6000

103 Hunold IT_PROG 9000

EMPLOYEE_ID LAST_NAME JOB_ID SALARY

100 King AD_PRES 24000

101 Kochhar AD_VP 17000

102 De Haan AD_VP 17000

104 Ernst IT_PROG 6000

A Third Scenario of Local Naming Dependencies

Presenter
Presentation Notes
A Scenario of Local Naming Dependencies

Be aware of the subtle case in which the creation of a table, view, or synonym may unexpectedly invalidate a dependent object because it interferes with the Oracle server hierarchy for resolving name references.

Predict the effect that the name of a new object has upon a dependent procedure.

Suppose that your QUERY_EMP procedure originally referenced a public synonym called EMPLOYEES. However, you have just created a new table called EMPLOYEES within your own schema.

Questions:

1. Does this change invalidate the procedure? Answer: Yes

2. Which of the two EMPLOYEES objects does QUERY_EMP reference when the procedure recompiles? Answer: your own EMPLOYEES table.

3. Now suppose that you drop your private EMPLOYEES table. Does this invalidate the procedure? Answer: Yes.

4. Now what happens when the procedure recompiles? Answer: It will recompile successfully and reference the public synonym.

You can track security dependencies in the USER_TAB_PRIVS data dictionary view.

82

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

Recompilation is done automatically, but can be manually done:
• Is handled automatically through implicit run-time

recompilation
• Is handled through explicit recompilation with the ALTER

statement:

ALTER PROCEDURE [SCHEMA.]procedure_name COMPILE;

ALTER FUNCTION [SCHEMA.]function_name COMPILE;

ALTER PACKAGE [SCHEMA.]package_name
COMPILE [PACKAGE | SPECIFICATION | BODY];

ALTER TRIGGER trigger_name COMPILE;

Recompiling a PL/SQL Program Unit

Presenter
Presentation Notes
Recompiling PL/SQL Objects

If the recompilation is successful, the object becomes valid. If not, the Oracle server returns an error and the object remains invalid. When you recompile a PL/SQL object, the Oracle server first recompiles any invalid object on which it depends.

Procedure: Any local objects that depend on a procedure (such as procedures that call the recompiled procedure or package bodies that define the procedures that call the recompiled procedure) are also invalidated, even if they were previously valid. This is because the recompiled procedure could have been edited before recompilation.

Packages: The COMPILE PACKAGE option recompiles both the package specification and the body, regardless of whether it is invalid. The COMPILE SPECIFICATION option recompiles the package specification. Recompiling a package specification invalidates any local objects that depend on the specification, such as subprograms that use the package. Note that the body of a package also depends on its specification. The COMPILE BODY option recompiles only the package body, and does not invalidate objects dependent on the specification.

Triggers: Explicit recompilation eliminates the need for implicit run-time recompilation and prevents associated run-time compilation errors and performance overhead.

The DEBUG option instructs the PL/SQL compiler to generate and store the code for use by the PL/SQL debugger.

83

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

Automatic or manual recompiling of dependent procedures and
functions is unsuccessful when:
• The referenced object is dropped or renamed
• The data type of the referenced column is changed
• The referenced column is dropped
• A referenced view is replaced by a view with different

columns
• The parameter list of a referenced procedure is modified

Unsuccessful Recompilation

Presenter
Presentation Notes
Unsuccessful Recompilation

Sometimes a recompilation of dependent procedures is unsuccessful (for example, when a referenced table is dropped or renamed).

The success of any recompilation is based on the exact dependency. If a referenced view is re-created, any object that is dependent on the view needs to be recompiled. The success of the recompilation depends on the columns that the view now contains, as well as the columns that the dependent objects require for their execution. If the required columns are not part of the new view, then the object remains invalid.

84

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

Automatic or manual recompiling of dependent procedures and
functions is successful if:
• The referenced table has new columns
• The data type of referenced columns has not changed
• A private table is dropped, but a public table that has the

same name and structure exists
• The PL/SQL body of a referenced procedure has been

modified and recompiled successfully

Successful Recompilation

Presenter
Presentation Notes
Successful Recompilation

The recompilation of dependent objects is successful if:

New columns are added to a referenced table

All INSERT statements include a column list

No new column is defined as NOT NULL

When a private table is referenced by a dependent procedure and the private table is dropped, the status of the dependent procedure becomes invalid. When the procedure is recompiled (either explicitly or implicitly) and a public table exists, the procedure can recompile successfully but is now dependent on the public table. The recompilation is successful only if the public table contains the columns that the procedure requires; otherwise, the status of the procedure remains invalid.

85

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

Minimize dependency failures by:
• Declaring records with the %ROWTYPE attribute
• Declaring variables with the %TYPE attribute
• Querying with the SELECT * notation
• Including a column list with INSERT statements

Recompilation of Procedures

Presenter
Presentation Notes
Recompilation of Procedures

You can minimize recompilation failure by following the guidelines that are shown in the slide.

86

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

Package body

Procedure A
definition

Definition changed

Procedure A
declaration

Package specification

ValidStand-alone
procedure

Valid

As long as the
package specification
is valid the stand-
alone procedure will
remain valid.

Packages and Dependencies

Presenter
Presentation Notes
Managing Dependencies

You can simplify dependency management and avoid unnecessary invalidations with packages when referencing a package procedure or function from a stand-alone procedure or function.

If the package body changes and the package specification does not change, then the stand-alone procedure that references a package construct remains valid.

If the package specification changes, then the outside procedure referencing a package construct is invalidated, as is the package body.

87

Semester 2 Final Review

Copyright © 2009, Oracle. All rights reserved.

Package body

Procedure A
definition

Procedure A
declaration

Package specification

Valid

Stand-alone
procedure

Definition
changed

Invalid

If the stand-alone
procedure is changed, the
package body is marked
invalid. Even though the
specification is valid, the
entire package body
would have to be
recompiled before the
next call to the package is
successful.

Packages and Dependencies

Presenter
Presentation Notes
Managing Dependencies (continued)

If a stand-alone procedure that is referenced within the package changes, then the entire package body is invalidated, but the package specification remains valid. Therefore, it is recommended that you bring the procedure into the package.

	Semester 2 Final Review
	Semester 2 Final Review
	Creating DDL and Database Event Triggers
	DDL and Database Event Triggers��
	Creating Triggers on DDL Statements
	Example of a DDL Trigger:
	Examples of Database Event Triggers�
	Examples of Database Event Triggers
	CALL Statements�
	Mutating Tables and Row Triggers�
	Mutating Table: Example
	Mutating Table: Example
	Managing Triggers
	Privileges Needed for Triggers
	Privileges Needed for Triggers: Example�
	Viewing Trigger Information�
	Using USER_TRIGGERS
	Listing the Code of Triggers
	Managing Triggers
	Removing Triggers�
	Using Large Object Data Types
	Large Object (LOB) Column Datatypes �
	Two ways to store large objects: the old and the new way��
	The Old Way�
	Converting LONG to CLOB��
	CLOB column �
	How and where is LOB data stored?�
	Adding a LOB column to a table:��
	Adding CLOB data to a column:�
	Reading CLOB data from the table:�
	Updating CLOB data:�
	Using DBMS_LOB, Step 1: Initializing the Locator:�
	Using DBMS_LOB, Step 2: Populating a CLOB column:��
	Reading BLOB column data using DBMS_LOB:��
	Managing BFILES
	What Is a BFILE?�
	How is a BFILE different from CLOBs and BLOBs?
	When to use a BFILE?�
	A New Database Object: DIRECTORY��We need a way of specifying which operating system directories (folders) contain our BFILEs, and also controlling which Oracle users are allowed to read the BFILE data. To do this, we create a DIRECTORY.�� A DIRECTORY is a pointer from the database to an operating system directory (folder) where BFILEs are stored.
	Creating and Managing Directories�Create a directory to point to an external location where BFILEs are stored, then allow everyone to use it:������Later we move our movie files to a different location. We must update the directory pointer:���
	Viewing Directories in the Data Dictionary�Unlike most database objects, directories do not belong to any schema, so there is no USER_DIRECTORIES dictionary view. Instead, we use ALL_DIRECTORIES:
	Adding and Populating a BFILE column
	Adding and Populating a BFILE column continued��
	Reading BFILE Locator Values�
	Reading BFILE Data Values
	User-Defined Records
	A Problem Scenario�
	And how can we return the results to the calling environment?
	Using a PL/SQL Record
	PL/SQL Records�
	Defining Our Own Records��
	Creating a User-Defined PL/SQL Record��
	User-Defined PL/SQL Records: Example
	Reusing PL/SQL Types for Multiple Records continued�
	Where Can Types and Records be Declared and Used?�
	Where Can Types and Records be Declared and Used Cont
	Visibility and Scope of Records: Example� �
	Index by Tables
	What is a Collection?�
	An INDEX BY Table Has a Primary Key
	INDEX BY Table Structure������������The primary key must be numeric, but could be meaningful business data, for example an employee id.
	Declaring an INDEX BY Table��
	Populating an INDEX BY Table: �
	Using INDEX BY Table Methods
	Important INDEX BY Table Methods
	Using INDEX BY Table Methods�
	INDEX BY TABLE OF RECORDS�
	Using an INDEX BY Table of Records�
	Understanding Dependencies
	Understanding Dependencies
	Dependencies�
	Dependencies Summarized�
	Local Dependencies�
	Local Dependencies continued�
	A Scenario of Local Dependencies�
	Displaying Direct Dependencies by Using USER_DEPENDENCIES�
	Displaying Direct and Indirect Dependencies
	Displaying Dependencies: the DEPTREE view��
	Another Scenario of Local Dependencies�
	A Third Scenario of Local Naming Dependencies�
	Recompiling a PL/SQL Program Unit�
	Unsuccessful Recompilation
	Successful Recompilation�
	Recompilation of Procedures�
	Packages and Dependencies�
	Packages and Dependencies�

