
Copyright © 2009, Oracle. All rights reserved.

Cursor FOR Loops

2

Cursor FOR Loops

Copyright © 2009, Oracle. All rights reserved.

What Will I Learn?
In this lesson, you will learn to:
• List and explain the benefits of using

cursor FOR loops
• Create PL/SQL code to declare a cursor

and manipulate it in a FOR loop
• Create PL/SQL code containing a cursor

FOR loop using a subquery

3

Cursor FOR Loops

Copyright © 2009, Oracle. All rights reserved.

Why Learn It?
You have already learned how to declare and
use a simple explicit cursor, using DECLARE,
OPEN, and FETCH in a loop, testing for
%NOTFOUND, and CLOSE statements.

Wouldn’t it be easier if you could do all this with
just one statement?

You can do all of this using a cursor FOR loop.

4

Cursor FOR Loops

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Cursor FOR Loops
A cursor FOR loop processes rows in an explicit cursor.
It is a shortcut because the cursor is opened, a row is fetched
once for each iteration in the loop, the loop exits when the last
row is processed, and the cursor is closed automatically. The
loop itself is terminated automatically at the end of the iteration
when the last row has been fetched.
Syntax:

FOR record_name IN cursor_name LOOP

statement1;

statement2;

. . .

END LOOP;

Presenter
Presentation Notes
By this time you can see why we studied loops before we studied cursors. Cursors and loops were made for each other. The majority of your PL/SQL programs will involve working with many rows from the same table so Oracle made that part easy for you by combining the declaration of a PL/SQL record and the use of a cursor in a FOR loop. So when you’re using an explicit cursor, you can simplify your coding by using a cursor FOR loop instead of the OPEN, FETCH and CLOSE statements. A cursor FOR loop implicitly declares its loop counter as a record that represents a row fetched from the database. Next, it opens a cursor, repeatedly fetching rows of values from the values set info fields in the record. Finally, it closes the cursor when all the rows have been processed.

5

Cursor FOR Loops

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Cursor FOR Loops (continued)
In the syntax:
• record_name Is the name of the implicitly declared

record (as cursor_name%ROWTYPE)
• cursor_name Is a PL/SQL identifier for the previously

declared cursor

FOR record_name IN cursor_name LOOP

statement1;

statement2;

. . .

END LOOP;

6

Cursor FOR Loops

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Cursor FOR Loops
Note: v_emp_record is the record that is implicitly declared.
You can access the fetched data with this implicit record as
shown in the slide. No variables are declared to hold the fetched
data by using the INTO clause. The code does not have OPEN
and CLOSE statements to open and close the cursor respectively.

DECLARE
CURSOR emp_cursor IS

SELECT employee_id, last_name FROM employees
WHERE department_id =50;

BEGIN
FOR v_emp_record IN emp_cursor

LOOP
DBMS_OUTPUT.PUT_LINE(v_emp_record.employee_id

|| ' ' ||v_emp_record.last_name);
END LOOP;

END;

7

Cursor FOR Loops

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Cursor FOR Loops
Compare the cursor FOR loop code with the expanded code you
learned in the previous lesson. The two forms of the code are logically
identical to each other and produce exactly the same results.

DECLARE
CURSOR emp_cursor IS
SELECT employee_id, last_name
FROM employees
WHERE department_id =50;

BEGIN
FOR v_emp_record IN emp_cursor

LOOP
DBMS_OUTPUT.PUT_LINE(…);

END LOOP;
END;

DECLARE
CURSOR emp_cursor IS

SELECT employee_id, last_name
FROM employees
WHERE department_id =50;

v_emp_record emp_cursor%ROWTYPE;
BEGIN

OPEN emp_cursor;
LOOP

FETCH emp_cursor INTO
v_emp_record;

EXIT WHEN emp_cursor%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(…);

END LOOP;
CLOSE emp_cursor;

END;

Presenter
Presentation Notes
Look at the simplification of the block of code on the left. Using a cursor FOR loop, we accomplish everything in one line that takes 5 lines of code to do with a basic loop on the right (record declaration, OPEN, FETCH, EXIT WHEN, and CLOSE statements). Using a cursor FOR loop will not improve performance. Although we do not code them explicitly, the OPEN, FETCH, EXIT WHEN %NOTFOUND and CLOSE still happen so the code will not execute faster. A Cursor FOR loop is, however, much easier to write, and much easier to understand when you read the code later.

8

Cursor FOR Loops

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Cursor FOR Loops: A Second Example

v_dept_record has been implicitly declared as
dept_cursor%ROWTYPE. How many fields does it contain?

DECLARE
CURSOR dept_cursor IS

SELECT department_id, department_name
FROM departments
ORDER BY department_id;

BEGIN
FOR v_dept_record IN dept_cursor
LOOP
DBMS_OUTPUT.PUT_LINE(v_dept_record.department_id

|| ' ' ||v_dept_record.department_name);
END LOOP;

END;

9

Cursor FOR Loops

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Guidelines for Cursor FOR Loops

• Do not declare the record that controls the loop because it is
declared implicitly.

• The scope of the implicit record is restricted to the loop, so
you cannot reference the record outside the loop.

• You can access fetched data by
record_name.column_name.

10

Cursor FOR Loops

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Testing Cursor Attributes

You can still test cursor attributes, such as %ROWCOUNT. This
example exits from the loop after five rows have been fetched
and processed. The cursor is still closed automatically.

DECLARE
CURSOR emp_cursor IS
SELECT employee_id, last_name FROM employees;

BEGIN
FOR v_emp_record IN emp_cursor
LOOP
EXIT WHEN emp_cursor%ROWCOUNT > 5;
DBMS_OUTPUT.PUT_LINE(v_emp_record.employee_id

|| ' ' ||v_emp_record.last_name);
END LOOP;

END;

11

Cursor FOR Loops

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Cursor FOR Loops Using Subqueries

You can go one step further. You don’t have to declare the cursor
at all! Instead, you can specify the SELECT on which the cursor is
based directly in the FOR loop.

The advantage of this is that all the cursor definition is contained
in a single FOR … statement. This makes later changes to the
code much easier and quicker.

The next slide shows an example.

12

Cursor FOR Loops

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Cursor FOR Loops Using Subqueries: Example

The SELECT clause in the FOR statement is technically a
subquery, so you must enclose it in parentheses.

BEGIN
FOR v_emp_record IN (SELECT employee_id, last_name

FROM employees WHERE department_id =50)
LOOP
DBMS_OUTPUT.PUT_LINE(v_emp_record.employee_id

||' '||v_emp_record.last_name);
END LOOP;

END;

Presenter
Presentation Notes
This slide shows how we can make the coding of cursors even more simple. We don’t have to declare the cursor at all. Instead, we specify the SELECT statement for the cursor directly in the FOR loop. Let’s review the statement together: FOR v_emp_record IN (SELECT employee_id, last_name FROM employees WHERE department_id = 50). This statement accomplishes a complete cursor loop. The cursor is not even declared or named here. However, because the cursor is not named, you cannot reference explicit cursor attributes, such as %ROWCOUNT and %NOTFOUND.

13

Cursor FOR Loops

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Cursor FOR Loops Using Subqueries (continued)
Again, compare these two forms of the code. They are logically
identical. But which one would you rather write – especially if you
hate typing!

BEGIN
FOR v_dept_rec IN (SELECT *

FROM departments)
LOOP

DBMS_OUTPUT.PUT_LINE(…);
END LOOP;

END;

DECLARE
CURSOR dept_cursor IS

SELECT * FROM departments;
v_dept_rec dept_cursor%ROWTYPE;

BEGIN
OPEN dept_cursor;
LOOP

FETCH dept_cursor INTO
v_dept_rec;

EXIT WHEN dept_cursor%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(…);

END LOOP;
CLOSE dept_cursor;

END;

14

Cursor FOR Loops

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Terminology
Key terms used in this lesson include:

Cursor FOR loop

15

Cursor FOR Loops

Copyright © 2009, Oracle. All rights reserved.

Summary
In this lesson, you learned to:
• List and explain the benefits of using cursor

FOR loops
• Create PL/SQL code to declare a cursor

and manipulate it in a FOR loop
• Create PL/SQL code containing a cursor

FOR loop using a subquery

16

Cursor FOR Loops

Copyright © 2009, Oracle. All rights reserved.

Try It/Solve It
The exercises in this lesson cover the following
topics:
• Listing and explaining the benefits of using

cursor FOR loops
• Creating PL/SQL code to declare a cursor

and manipulate it in a FOR loop
• Creating PL/SQL code containing a cursor

FOR loop using a subquery

	Cursor FOR Loops
	What Will I Learn?
	Why Learn It?
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Summary
	Try It/Solve It

