
Trapping Oracle Server Exceptions

Terminology
Directions: Identify the vocabulary word for each definition below:
1. _________________________ Each of these has a predefined name. For example, if the

error ORA-01403 occurs when no rows are retrieved from the database in a SELECT
statement, then PL/SQL raises the predefined exception-name NO_DATA_FOUND.

2. _________________________ Tells the compiler to associate an exception name with an
Oracle error number. That allows you to refer to any Oracle Server exception by name and to
write a specific handler for it.

3. _________________________ Returns character data containing the message associated
with the error number

4. _________________________ Each of these has a standard Oracle error number (ORA-
nnnnn) and error message, but not a predefined name. We declare our own names for these
so that we can reference these names in the exception section.

5. _________________________ Returns the numeric value for the error code (You can assign
it to a NUMBER variable.)

Try It / Solve It
1. What are the three types of exceptions that can be handled in a PL/SQL block?

2. What is the difference in how each of these three types of exception is handled in the

PL/SQL block?

3. Enter and run the following PL/SQL block. Look at the output and answer the following

questions:

DECLARE
 v_number NUMBER(6,2) := 100;
 v_region_id wf_world_regions.region_id%TYPE;
 v_region_name wf_world_regions.region_name%TYPE;
BEGIN
 SELECT region_id, region_name INTO v_region_id, v_region_name
 FROM wf_world_regions
 WHERE region_id = 1;
 DBMS_OUTPUT.PUT_LINE('Region: ' || v_region_id ||
 ' is: ' || v_region_name);
 v_number := v_number / 0;
END;

A. What error message is displayed and why ?

B. Modify the block to handle this exception and re-run your code. Now what happens and

why?

Oracle Academy 1 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

C. Modify the block again to change the WHERE clause to region_id = 29. Re-run the

block. Now what happens and why?

D. Modify the block again to handle the latest exception and re-run your code.

4. Enter and run the following PL/SQL block. Look at the output and answer the following

questions:

DECLARE
 CURSOR regions_curs IS
 SELECT * FROM wf_world_regions
 WHERE region_id < 20
 ORDER BY region_id;
 regions_rec regions_curs%ROWTYPE;
 v_count NUMBER(6);
BEGIN
 LOOP
 FETCH regions_curs INTO regions_rec;
 EXIT WHEN regions_curs%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE('Region: '|| regions_rec.region_id ||
 ' Name: ' || regions_rec.region_name);
 END LOOP;
 CLOSE regions_curs;
 SELECT COUNT(*) INTO v_count
 FROM wf_world_regions
 WHERE region_id = 1;
 DBMS_OUTPUT.PUT_LINE('The number of regions is: ' || v_count);
END;

A. What happens and why ?

B. Modify the block to handle the exception and re-run your code.

C. Modify the block again to add an OPEN statement for the cursor, and re-run your code.

Now what happens and why? Remember that region_id = 1 does not exist.

Oracle Academy 2 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

Oracle Academy 3 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

5. Oracle Server Error:s:
A. Add an exception handler to the following code to trap the following predefined Oracle

Server errors: NO_DATA_FOUND, TOO_MANY_ROWS and
DUP_VAL_ON_INDEX.

DECLARE
 v_language_id wf_languages.language_id%TYPE;
 v_language_name wf_languages.language_name%TYPE;
BEGIN
 SELECT language_id, language_name
 INTO v_language_id, v_language_name
 FROM wf_languages
 WHERE LOWER(language_name) LIKE '<substring%>'; -- for example 'ab%'
 INSERT INTO wf_languages(language_id, language_name)
 VALUES(80, null);
END;

B. Test your block twice using each of the following language substrings: ba, ce. There are

several language_names beginning with “Ba” but none beginning with “Ce”.

C. Now test your block a third time using substring: al. There is exactly one language_name

beginning with “Al”. Note that language_id 80 (Arabic) already exists. Explain the
output.

D. Now (keeping the substring as “al”) add a non_predefined exception handler to trap the

ORA-01400 exception. Name your exception e_null_not_allowed. Rerun the code and
observe the results.

Extension exercise
1. In preparation for this exercise, run the following SQL statement to create an error-logging

table:

CREATE TABLE error_log (who VARCHAR2(30),
 when DATE,
 error_code NUMBER(6),
 error_message VARCHAR2(255));

Modify your PL/SQL block from question 5 to remove the four explicit exception handlers,
replacing them with a single WHEN OTHERS handler. The handler should INSERT a row
into the error_log table each time an exception is raised and handled. The row should consist
of the Oracle username (who), when the error was raised (when) and the SQLCODE and
SQLERRM of the exception. Test your block several times, with different data values to
raise each of the four kinds of exception handled in the block. Finally, SELECT from the
error-logging table to check that the rows have been inserted.

	Trapping Oracle Server Exceptions
	Terminology
	Try It / Solve It

