ORACLE Academy

Using Scalar Data Types

Copyright © 2009, Oracle. All rights reserved.



Using Scalar Data Types ORACLE Academy

@ What Will | Learn?

In this lesson, you will learn how to:

 Declare and use scalar data types

» Define guidelines for declaring and
Initializing PL/SQL variables

» Identify the benefits of anchoring data
types with the %TYPE attribute

Copyright © 2009, Oracle. All rights reserved. 2



ORACLE Academy
Why Learn It?

Most of the variables you define and use in
PL/SQL have scalar data types.

A variable can have an explicit data type,

such as VARCHAR2, or it can automatically
have the same data type as a table column
In the database. You will learn the benefits
of basing some variables on table columns.

Copyright © 2009, Oracle. All rights reserved. 3



L@ng Scalar Data Types ORACLE Academy

C Tell Me/Show Me

Declaring Character Variables

Character data types include CHAR, VARCHAR2,
and LONG.

DECLARE
v_emp_job VARCHAR2(9);
v_order_no VARCHAR2(6) ;
V_product_id VARCHAR2(10);

Vv_rpt _body part LONG;

Copyright © 2009, Oracle. All rights reserved. 4


Presenter
Presentation Notes
This slide demonstrates the declaration of several character data type variables. Typically, we use v_ to prefix a named variable.




() ORACLE Academy

O Tell Me/Show Me

Declaring Number Variables

Number data types include NUMBER, PLS INTEGER,
BINARY INTEGER, and BINARY_ FLOAT. In the syntax,
CONSTANT constrains the variable so that its value cannot

change. Constants must be initialized.

INTEGER is an alias for NUMBER(38,0).

DECLARE
v_dept total sal NUMBER(9,2) := O;
v_count_loop INTEGER :-= O;
c_tax_rate CONSTANT NUMBER(3,2) := 8.25;

Copyright © 2009, Oracle. All rights reserved. 5


Presenter
Presentation Notes
Here we see the declaration of several numeric variables. Notice the third one: c_tax_rate includes the syntax, CONSTANT. When a variable is declared as a CONSTANT, it cannot be changed by any of the code that uses it. It also must be initialized to a value. In this case, 8.25. Remember, all variables must be declared before being used in a program. Typically, we use c_ to prefix a named constant.




L@ng Scalar Data Types ORACLE Academy

C Tell Me/Show Me

Declaring Date Variables

Date data types include DATE, TIMESTAMP, and TIMESTAMP
WITH TIMEZONE.

DECLARE
V_orderdate DATE := SYSDATE + 7;
v_natl _holiday DATE;

v_web_sign_on_date TIMESTAMP;

Copyright © 2009, Oracle. All rights reserved. 6


Presenter
Presentation Notes
This slide shows the declaration of various date variables. 




()

O Tell Me/Show Me

Declaring Boolean Variables

ORACLE Academy

Boolean is a data type that stores one of the three possible
values used for logical calculations: TRUE, FALSE, or NULL.

DECLARE
v_valid BOOLEAN NOT NULL
v_1s_found BOOLEAN := FALSE;
V_underage BOOLEAN;

.= TRUE;

Copyright © 2009, Oracle. All rights reserved.


Presenter
Presentation Notes
This slide shows how to initialize and declare Boolean variables. The first example: v_valid is declared a Boolean and not NULL. This means it must be initialized through a value of either TRUE or FALSE, in this case TRUE. The second v_is_found is another Boolean – this time initialized as FALSE. The third one: v_underage is a Boolean without an initial value. Conditional expressions use the logical operators AND and OR, and the operator NOT to check the variable values. You can use arithmetic, character, and date expressions to return a Boolean value.




ORACLE Academy
Tell Me/Show Me

Declaring Boolean Variables

 Only the values TRUE, FALSE, and NULL can be assigned to a
Boolean variable.

« Conditional expressions use the logical operators AND and
OR, and the operator NOT to check the variable values.

 The variables always yield TRUE, FALSE, or NULL.

 You can use arithmetic, character, and date expressions to
return a Boolean value.

Copyright © 2009, Oracle. All rights reserved. 8



()

ORACLE Academy

O Tell Me/Show Me
Guidelines for Declaring and Initializing PL/SQL Variables

Use meaningful names and follow naming conventions.

Declare one identifier per line for better readability, code
maintenance, and easier commenting.

Use the NOT NULL constraint when the variable must hold a
value.

Avoid using column names as identifiers.

DECLARE
country 1d CHAR(2);
BEGIN
SELECT country id
INTO country_id
FROM countries
WHERE country _name = "Canada“;

END;

Copyright © 2009, Oracle. All rights reserved. 9


Presenter
Presentation Notes
This slide shows some guidelines for declaring and initializing PL/SQL variables. You should follow these guidelines whenever possible. The first is to use meaningful and appropriate names for variables. For example, instead of using salary1 and salary2 as variables, consider using v_salary and v_salary_bonus as they are more descriptive names. Ideally, you should follow some naming conventions. Naming conventions used in this course are v_ to represent a variable, c_ to represent a constant, and p_ to represent a parameter, and you’ll see more conventions as we go along. 

The NOT NULL constraint can be used when a variable must always contain a value. The last guideline says to avoid using column names as identifiers. If PL/SQL variables occur in SQL statements and they have the same name as a column, the Oracle server assumes that it is the column that you are talking about and not the variable. This can become very confusing and can result in poor programming results. 




L,C?].ng Scalar Data Types ORACLE Academy

C Tell Me/Show Me

Anchoring Variables with the %TYPE Attribute

Rather than hard-coding the data type and precision of a variable,
you can use the %TYPE attribute to declare a variable according to

another previously declared variable or database column.

The TYPE attribute is most often used when the value stored in
the variable is derived from a table in the database.

When you use the %TYPE attribute to declare a variable, you
should prefix it with the database table and column name.

Copyright © 2009, Oracle. All rights reserved. 10


Presenter
Presentation Notes
When we initially declare the variable and we want to assign it to a data type, we sometimes want to make sure that that type matches exactly a column name or even a table name. When we need to do this, we use what’s called the %TYPE attribute. You can use the %TYPE attribute to declare a variable according to another previously declared variable or a database column. The %TYPE attribute is most often used when the value stored in the variable will be derived from a table in the database. The %TYPE is prefixed by a table name and/or a column name. The %TYPE attribute is used to automatically give the variable the same data type and size as a database column definition or another declared variable. This is a useful programming technique because if the underlying column definition changes, the code automatically changes as well. This is preferable to manually changing the data type throughout all of your code.




ORACLE Academy

O Tell Me/Show Me

%TYPE Attribute
Look at this database table and the PL/SQL block that uses it:

CREATE TABLE myemps (

emp_name VARCHAR2(6),
emp_salary NUMBER(6,2));
DECLARE
v_emp_salary NUMBER(6,2);
BEGIN

SELECT emp_salary INTO v_emp_salary
FROM myemps WHERE emp_name = "Smith";
END;

This PL/SQL block stores the correct salary in the v_emp_salary
variable. But what if the table column is altered later?

Copyright © 2009, Oracle. All rights reserved. 11



Using Scalar Data Types ORACLE Academy

C Tell Me/Show Me

%TYPE Attribute (continued)
The %TYPE attribute:
 Is used to automatically give a variable the same data type
and size as:
— A database column definition
— Another declared variable
* Is prefixed with either of the following:
— The database table and column
— The name of the other declared variable

Copyright © 2009, Oracle. All rights reserved. 12



() ORACLE Academy

O Tell Me/Show Me
Declaring Variables with the %TYPE Attribute

Syntax:
identifier table.column_name%TYPE;
Examples:
v_emp_Iname employees. last name%TYPE;
v_balance NUMBER(7,2);
v_min_balance v_balance%TYPE :-= 1000;

Copyright © 2009, Oracle. All rights reserved. 13


Presenter
Presentation Notes
This slide demonstrates how to declare a variable with the %TYPE attribute. The syntax is the name of the identifier, the table name, dot (.), the column name, and then %TYPE. All this is declared without spaces. A semicolon ends the declaration. Three examples are given below. The first example shows v_emp_lname as a data type that matches exactly the last name column in the employees table. The v_balance is a standard numeric column with a precision of 7 and a scale of 2. v_min_balance is declared as a data type that exactly matches the variable v_balance, which means it is a number with a precision of 7 and a scale of 2. This is a great way to declare variables with a data type already known to a database table. 




() ORACLE Academy

O Tell Me/Show Me
Advantages of the %TYPE Attribute

* You can avoid errors caused by data type mismatch or wrong
precision.

* You need not change the variable declaration if the column

definition changes. That is, if you have already declared some
variables for a particular table without using the %TYPE

attribute, then the PL/SQL block can return errors if the column
for which the variable declared is altered.

 When you use the %TYPE attribute, PL/SQL determines the

data type and size of the variable when the block is compiled.
This ensures that such a variable is always compatible with
the column that is used to populate it.

Copyright © 2009, Oracle. All rights reserved. 14


Presenter
Presentation Notes
This slide shows several advantages of the %TYPE attribute. Basically, you can summarize the advantage as saying it avoids errors caused by data type mismatch or wrong precision. 




O Tell Me/Show Me

%TYPE Attribute
Look again at the database table and the PL/SQL block:

ORACLE Academy

CREATE TABLE myemps (

emp_name VARCHAR2(6),
emp_salary NUMBER(6,2));
DECLARE
v_emp_salary myemps.emp_salary%TYPE;
BEGIN

SELECT emp_salary INTO v_emp_salary
FROM myemps WHERE emp _name = "Smith";
END;

Now the PL/SQL block continues to work correctly even if the column

data type is altered later.

Copyright © 2009, Oracle. All rights reserved.

15



LZng Scalar Data Types ORACLE Academy

O Tell Me / Show Me

Terminology
Key terms used in this lesson include:

Boolean
%TYPE

Copyright © 2009, Oracle. All rights reserved. 16


Presenter
Presentation Notes
Terminology Definitions:




Using Scalar Data Types ORACLE Academy

© Summary

In this lesson, you have learned how to:

 Declare and use scalar data types

» Define guidelines for declaring and
Initializing PL/SQL variables

» Identify the benefits of anchoring data
types with the %TYPE attribute

Copyright © 2009, Oracle. All rights reserved. 17



ORACLE Academy
%Try It/Solve It

This practice covers the following topics:

 Declaring and using scalar data types
(character, number, date, and Boolean)

* Defining guidelines for declaring and
Initializing PL/SQL variables

« Identifying the benefits of anchoring data
types with the %TYPE attribute

Copyright © 2009, Oracle. All rights reserved. 18



	Using Scalar Data Types
	What Will I Learn?
	Why Learn It?
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me / Show Me
	Summary	
	Try It/Solve It

