
Midterm Project
Part I

Instructions for Students

Make sure you save all your work in files, so you can check it later and also re-use the work
done here later in the next MidTerm Project.

Project Setup: The Data
This project will use a case study called STUDENT ADMINISTRATION or SA. A set of
database tables is used to manage a school’s course offerings as delivered by instructors in many
classes over time. Information is stored about classes that are offered, the students who take
classes, and the grades the students receive on various assessments. The school administrators
can use the SA database to manage the class offerings and to assign instructors. Teachers can
also use the SA database to track student performance.

The database objects for this project are already in your accounts and they are as follows:

Tables:

INSTRUCTORS
SECTIONS
COURSES
CLASSES
ASSESSMENTS
STUDENTS
ENROLLMENTS
CLASS_ASSESSMENTS
ERROR_LOG
GRADE_CHANGES

Sequence:
ASSESSMENT_ID_SEQ

Synonyms:
sect FOR sections
instr FOR instructors
enroll FOR enrollments
stu FOR students
cl_assess FOR class_assessments
cl FOR classes
cour FOR courses
assess FOR assessment.

Oracle Academy 1 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

Part 1: Student Information

1. Create an anonymous PL/SQL block to enroll a student in a particular class. Make sure the

students save it in a file called enroll_student_in_class.sql . You will use the
ENROLLMENTS table. Accept a STU_ID and CLASS_ID as input parameters. Use
“today’s date” for the ENROLLMENT_DATE and the string ‘Enrolled’ for the STATUS.
Hint: To get your program to prompt for the values for STU_ID and CLASS_ID do the
following:

DECLARE
v_stu_id enrollments.stu_id%TYPE := :student_id;
v_class_id enrollments.class_id%TYPE) := :class_id;
.....

2. Create an anonymous block to drop a student from a class. Save the block in a file called

drop_student_from_class.sql. You will use the ENROLLMENTS table. Accept a STU_ID
and CLASS_ID as input parameters.

3. Create an anonymous block that displays all of the classes a student has been enrolled in

within the most recent 6 years. Save the block in a file student_class_list You will use the
ENROLLMENTS table. For example: If you run your program on May 10, 2006, you should
display all enrollments between May 10, 2000 and May 10, 2006. Accept the STU_ID as an
input parameter. For each enrollment, display the ENROLLMENT_DATE, CLASSS_ID and
STATUS.

4. Create an anonymous block to add “n” new classes for a particular course. Save the block in

a file called add_new_classes.sql Accept the following IN parameter:
• Number of new classes required. Set a default value of 1.
• Course id; For each new class, use “today”as the START_DATE.
• Period, to specify what days the class meets.
• Frequency, to specify how often it meets.
• Intsructor id, who is teaching the class(s).

There are 2 ways you can generate a new CLASS_ID.
First use a SELECT to find out what is currently the highest CLASS_ID. Increment this
number by 1 for each new class you add. For example: When you run your program, the
highest CLASS_ID is 12 and you want to create 3 new classes. Your new CLASS_IDs would
be 13, 14, and 15.
Create a sequence number that starts with a number higher than the maximum CLASS_ID.
Use sequence_name.NEXTVAL in your INSERT statement.

Test your program by adding 4 new classes for COURSE_ID #1001. Also test your default
by calling the program to add only one class for COURSE_ID #1002.

Oracle Academy 2 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

Part 2: Teacher Tools

1. Create an anonymous block that a teacher can run to see the students in a course across all

classes of that course. Save the block in a file called course_roster.sql. Accept the
INSTR_ID and COURSE_ID. For each ENROLLMENT, display: CLASS_ID, STATUS,
Student FIRST_NAME and LAST_NAME.

2. Create an anonymous block which will convert a number grade to a letter grade. Save your

work in a file called convert_grade.sql. Prompt for a number grade. RETURN a CHAR
value. Use the following rules: A:90 or above, B: >=80 and<90 , C: >=70 and < 80, D: >=60
and < 70, F:<60.

3. Create an anonymous block that will RETURN the number of students in a particular class.

Save your work in a file called student_count.sql. Accept a CLASS_ID as a parameter.

4. Create an anonymous block which a teacher can run to insert a new assignment

(ASSESSMENT) including a DESCRIPTION. Save the program in a file called
create_assignment.sql. Use the ASSESSMENT_ID_SEQ sequence to generate the
class_assessment_id.

5. Create an anonymous block that a teacher can run to insert the student's grade on a particular

assignment. Save the program in a file called enter_student_grade.sql. Accept a
NUMERIC_GRADE, CLASS_ASSESSMENT_ID, CLASS_ID and STU_ID. Use
“today’s” date for the DATE_TURNED_IN.

Oracle Academy 3 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

Oracle Academy 4 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

Part 3: School Administrator’s Tools

1. Create an anonymous block to list any enrollments which have NEITHER a

FINAL_NUMERIC_GRADE or FINAL_LETTER_GRADE. Save the program in a file
called show_missing_grades.sql. Accept a start_date and end_date to establish a date range.
Display only enrollments between those 2 dates. Write your program so the start_date and
end_date are optional. If both dates are not entered, display all applicable enrollments for the
past year, and include a note about the date range. For each enrollment, list the CLASS_ID,
STU_ID, and STATUS. Order the output by ENROLLMENT_DATE with the most recent
enrollments first.

2. Create an anonymous block to find the average grade for a class. Save the program in a file

called compute_average_grade .sql. Assume the class has used numeric_grades. Accept a
CLASS_ID. Return the average grade.

3. Create an anonymous block to return the number of classes offered for a given course. Save

the program in a file called count_classes_per_course.sql. Have the program prompt for a
course ID.

4. Create an anonymous block to list all classes offered between a range of dates. Save your

program in a file called show_class_offerings.sql. Accept a start date and end date. For each
class found, display the CLASS_ID, START_DATE, instructor FIRST_NAME and
LAST_NAME, course TITLE and SECTION_CODE.

	Project Setup: The Data
	4. Create an anonymous block to add “n” new classes for a particular course. Save the block in a file called add_new_classes.sql Accept the following IN parameter:
	 Number of new classes required. Set a default value of 1.
	 Course id; For each new class, use “today”as the START_DATE.
	 Period, to specify what days the class meets.
	 Frequency, to specify how often it meets.
	 Intsructor id, who is teaching the class(s).
	There are 2 ways you can generate a new CLASS_ID.
	First use a SELECT to find out what is currently the highest CLASS_ID. Increment this number by 1 for each new class you add. For example: When you run your program, the highest CLASS_ID is 12 and you want to create 3 new classes. Your new CLASS_IDs would be 13, 14, and 15.
	Create a sequence number that starts with a number higher than the maximum CLASS_ID. Use sequence_name.NEXTVAL in your INSERT statement.

	Part 2: Teacher Tools
	Part 3: School Administrator’s Tools
	2. Create an anonymous block to find the average grade for a class. Save the program in a file called compute_average_grade .sql. Assume the class has used numeric_grades. Accept a CLASS_ID. Return the average grade.
	3. Create an anonymous block to return the number of classes offered for a given course. Save the program in a file called count_classes_per_course.sql. Have the program prompt for a course ID.
	4. Create an anonymous block to list all classes offered between a range of dates. Save your program in a file called show_class_offerings.sql. Accept a start date and end date. For each class found, display the CLASS_ID, START_DATE, instructor FIRST_NAME and LAST_NAME, course TITLE and SECTION_CODE.

