
Copyright © 2008, Oracle. All rights reserved.

Dynamic SQL

2

Dynamic SQL

Copyright © 2008, Oracle. All rights reserved.

What Will I Learn?
In this lesson, you will learn to:
• Recall the stages through which all

SQL statements pass
• Describe the reasons for using

dynamic SQL to create an SQL
statement

• List four PL/SQL statements
supporting Native Dynamic SQL

• Describe the benefits of EXECUTE
IMMEDIATE over DBMS_SQL for
Dynamic SQL

3

Dynamic SQL

Copyright © 2008, Oracle. All rights reserved.

Why Learn It?

In this lesson, you learn to construct and
execute SQL statements dynamically—in
other words, at run time using the Native
Dynamic SQL statements in PL/SQL.

Dynamically executing SQL and PL/SQL
code extends the capabilities of PL/SQL
beyond query and transactional operations.

The lesson also compares Native Dynamic
SQL to the DBMS_SQL package, which
provides similar capabilities.

4

Dynamic SQL

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Execution Flow of SQL
• All SQL statements in the database go through various

stages:
– Parse: Pre-execution “is this possible?” checks including

syntax, object existence, privileges, and so on.
– Bind: Getting the actual values of any variables referenced

in the statement.
– Execute: The statement is executed.
– Fetch: Results are returned to the user.

• Some stages might not be relevant for all statements, for
example, the fetch phase is applicable to queries but not
DML.

5

Dynamic SQL

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Execution Flow of SQL in PL/SQL Subprograms

When an SQL statement is included in a PL/SQL subprogram,
the parse and bind phases are normally done at compile time,
that is, when the procedure, function or package body is
CREATEd.
What if the text of the SQL statement is not known when the
procedure is created? How could the Oracle server parse it?
It couldn’t. For example, suppose you want to DROP a table,
but the user enters the table name at execution time:

CREATE PROCEDURE drop_any_table(p_table_name VARCHAR2)
IS BEGIN
DROP TABLE p_table_name; -- cannot be parsed

END;

6

Dynamic SQL

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Dynamic SQL
You use dynamic SQL to create an SQL statement whose text is
not completely known in advance. Dynamic SQL:
• Is constructed and stored as a character string within a

subprogram.
• Is an SQL statement with varying column data, or different

conditions with or without placeholders (bind variables)
• Enables data-definition, data-control, or session-control

statements to be written and executed from PL/SQL
• Is executed with Native Dynamic SQL statements (EXECUTE

IMMEDIATE) or the DBMS_SQL package

Dynamic SQL statements are parsed at execution time, not at
compile time.

7

Dynamic SQL

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Native Dynamic SQL

• Provides native support for Dynamic SQL directly in the
PL/SQL language

• Provides the ability to execute SQL statements whose
structure is unknown until execution time

• Uses the EXECUTE IMMEDIATE PL/SQL statement
• Can also use the OPEN-FOR, FETCH, and CLOSE

PL/SQL statements.

8

Dynamic SQL

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Using the EXECUTE IMMEDIATE Statement
Use the EXECUTE IMMEDIATE statement for Native Dynamic
SQL in PL/SQL anonymous blocks or subprograms:

• INTO is used for single-row queries and specifies the
variables or records into which column values are
retrieved.

• USING holds all bind arguments. The default parameter
mode is IN, if not specified.

EXECUTE IMMEDIATE dynamic_string
[INTO {define_variable

[, define_variable] ... | record}]
[USING [IN|OUT|IN OUT] bind_argument

[, [IN|OUT|IN OUT] bind_argument] ...];

9

Dynamic SQL

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Using the EXECUTE IMMEDIATE Statement (continued)

dynamic_string is a character variable or literal containing the text
of an SQL statement.
define_variable is a PL/SQL variable that stores a selected
column value.
record is a user-defined or %ROWTYPE record that stores a selected
row.
bind_argument is an expression whose value is passed to the
dynamic SQL statement at execution time.
USING clause holds all bind arguments. The default parameter mode
is IN.

EXECUTE IMMEDIATE dynamic_string
[INTO {define_variable

[, define_variable] ... | record}]
[USING [IN|OUT|IN OUT] bind_argument

[, [IN|OUT|IN OUT] bind_argument] ...];

10

Dynamic SQL

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Example 1: Dynamic SQL with a DDL Statement
Constructing the dynamic statement in-line

Constructing the dynamic statement in a variable

CREATE PROCEDURE drop_any_table(p_table_name VARCHAR2) IS
BEGIN
EXECUTE IMMEDIATE 'DROP TABLE '||p_table_name;

END;

BEGIN drop_any_table('EMPLOYEE_NAMES'); END;

CREATE PROCEDURE drop_any_table(p_table_name VARCHAR2) IS
v_dynamic_stmt VARCHAR2(50);

BEGIN
v_dynamic_stmt := 'DROP TABLE '||p_table_name;
EXECUTE IMMEDIATE v_dynamic_stmt;

END;

11

Dynamic SQL

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Example 2: Dynamic SQL with a DML Statement
Deleting all the rows from any table and returning a count

Invoking the function

CREATE FUNCTION del_rows(p_table_name VARCHAR2)
RETURN NUMBER IS
BEGIN
EXECUTE IMMEDIATE 'DELETE FROM '||p_table_name;
RETURN SQL%ROWCOUNT;

END;

DECLARE
v_count NUMBER;

BEGIN
v_count := del_rows('EMPLOYEE_NAMES');
DBMS_OUTPUT.PUT_LINE(v_count|| ' rows deleted.');

END;

12

Dynamic SQL

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Example 3: Dynamic SQL with a DML Statement

Inserting a row into a table with two columns

Invoking the procedure

CREATE PROCEDURE add_row(p_table_name VARCHAR2,
p_id NUMBER, p_name VARCHAR2) IS

BEGIN
EXECUTE IMMEDIATE 'INSERT INTO '||p_table_name||

' VALUES (p_id, p_name)';
END;

BEGIN
add_row('EMPLOYEE_NAMES', 250, 'Chang');

END;

13

Dynamic SQL

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Example 4: Using Native Dynamic SQL to Recompile
PL/SQL Code

You can recompile PL/SQL objects without recreating them by
using the following ALTER statements:

The next slide shows a procedure that recompiles a PL/SQL
object whose name and type is entered at run-time.

ALTER PROCEDURE procedure-name COMPILE;
ALTER FUNCTION function-name COMPILE;
ALTER PACKAGE package_name COMPILE SPECIFICATION;
ALTER PACKAGE package-name COMPILE BODY;

14

Dynamic SQL

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Example 4 (continued)
Creating the procedure

Example invocation

CREATE PROCEDURE compile_plsql
(p_name VARCHAR2,p_type VARCHAR2,p_options VARCHAR2 := NULL)
IS
v_stmt VARCHAR2(200);

BEGIN
v_stmt := 'ALTER '||p_type||' '||p_name||' COMPILE'

||' '||p_options;
EXECUTE IMMEDIATE v_stmt;

END;

BEGIN compile_plsql('MYPACK','PACKAGE','BODY'); END;

15

Dynamic SQL

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Using the DBMS_SQL Package

Before Oracle 8i, the EXECUTE IMMEDIATE statement did not
exist in PL/SQL, and the presupplied DBMS_SQL package was
the only way to write dynamic SQL.

Some of the procedures and functions of the DBMS_SQL
package are:
• OPEN_CURSOR
• PARSE
• BIND_VARIABLE
• EXECUTE
• FETCH_ROWS
• CLOSE_CURSOR

16

Dynamic SQL

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Using DBMS_SQL with a DML Statement
Example of deleting rows:

Compare this with the del_rows function earlier in this
lesson. They are functionally identical, but which is simpler?

CREATE OR REPLACE FUNCTION del_rows
(p_table_name VARCHAR2) RETURN NUMBER IS
v_csr_id INTEGER;
v_rows_del NUMBER;

BEGIN
v_csr_id := DBMS_SQL.OPEN_CURSOR;
DBMS_SQL.PARSE(v_csr_id,
'DELETE FROM '||p_table_name, DBMS_SQL.NATIVE);

v_rows_del := DBMS_SQL.EXECUTE (v_csr_id);
DBMS_SQL.CLOSE_CURSOR(v_csr_id);
RETURN v_rows_del;

END;

17

Dynamic SQL

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Using DBMS_SQL with a Parameterized DML Statement

Again, compare this with the add_row procedure earlier in
this lesson. Which would you rather write?

CREATE PROCEDURE add_row (p_table_name VARCHAR2,
p_id NUMBER, p_name VARCHAR2) IS
v_csr_id INTEGER;
v_stmt VARCHAR2(200);
v_rows_added NUMBER;

BEGIN
v_stmt := 'INSERT INTO '||p_table_name||

' VALUES ('||p_id||','''||p_name||''')';
v_csr_id := DBMS_SQL.OPEN_CURSOR;
DBMS_SQL.PARSE(v_csr_id,v_stmt, DBMS_SQL.NATIVE);
v_rows_added := DBMS_SQL.EXECUTE(v_csr_id);
DBMS_SQL.CLOSE_CURSOR(v_csr_id);

END;

18

Dynamic SQL

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Comparison of Native Dynamic SQL and the DBMS_SQL
Package

Native Dynamic SQL:
• Is easier to use than DBMS_SQL
• Requires less code than DBMS_SQL
• Often executes faster than DBMS_SQL because there are

fewer statements to execute.

19

Dynamic SQL

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Terminology
Key terms used in this lesson include:

Dynamic SQL
EXECUTE IMMEDIATE

20

Dynamic SQL

Copyright © 2008, Oracle. All rights reserved.

Summary
In this lesson, you learned to:
• Recall the stages through which all

SQL statements pass
• Describe the reasons for using

dynamic SQL to create an SQL
statement

• List four PL/SQL statements
supporting Native Dynamic SQL

• Describe the benefits of EXECUTE
IMMEDIATE over DBMS_SQL for
Dynamic SQL

21

Dynamic SQL

Copyright © 2008, Oracle. All rights reserved.

Try It / Solve It
The exercises in this lesson cover
the following topics:
• Recalling the stages through

which all SQL statements pass
• Describing the reasons for

using dynamic SQL to create an
SQL statement

• Listing four PL/SQL statements
supporting Native Dynamic SQL

• Describing the benefits of
EXECUTE IMMEDIATE over
DBMS_SQL for Dynamic SQL

	Dynamic SQL
	What Will I Learn?
	Why Learn It?
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Summary
	Try It / Solve It

