
Copyright © 2008, Oracle. All rights reserved.

Advanced Package Concepts

2

Advanced Package Concepts

Copyright © 2008, Oracle. All rights reserved.

What Will I Learn?
In this lesson, you will learn to:
• Write packages that use the

overloading feature
• Write packages that use forward

declarations
• Explain the purpose of a package

initialization block
• Identify restrictions on using

packaged functions in SQL
statements

3

Advanced Package Concepts

Copyright © 2008, Oracle. All rights reserved.

Why Learn It?

This lesson introduces additional advanced
features of PL/SQL packages, including
overloading, forward referencing, and a
package initialization block.

It also explains the restrictions on package
functions that are used in SQL statements.

4

Advanced Package Concepts

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Overloading Subprograms

The overloading feature in PL/SQL enables you to develop two or
more packaged subprograms with the same name. Overloading is
useful when you want a subprogram to accept similar sets of
parameters that have different data types.

For example, the TO_CHAR function has more than one way to be
called, enabling you to convert a number or a date to a character
string.

FUNCTION TO_CHAR (p1 DATE) RETURN VARCHAR2;
FUNCTION TO_CHAR (p2 NUMBER) RETURN VARCHAR2;
...

5

Advanced Package Concepts

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Overloading Subprograms (continued)

The overloading feature in PL/SQL:
• Enables you to create two or more subprograms with the

same name, in the same package
• Enables you to build flexible ways for invoking the same

subprograms with different data
• Makes things easier for the application developer, who has

to remember only one subprogram name.

The key rule is that you can use the same name for different
subprograms as long as their formal parameters differ in number,
order, or category of data type.
Note: Overloading can be done with subprograms in packages,
but not with standalone subprograms.

6

Advanced Package Concepts

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Overloading Subprograms (continued)

Consider using overloading when the purposes of two or more
subprograms are similar, but the type or number of parameters
used varies.

Overloading can provide alternative ways for finding different
data with varying search criteria. For example, you might want to
find employees by their employee id, and also provide a way to
find employees by their job id, or by their hire date. The purpose
is the same, but the parameters or search criteria differ.

The next slide shows an example of this.

7

Advanced Package Concepts

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Overloading: Example

The emp_pkg package specification contains an overloaded
procedure called find_emp. The input arguments of the three
declarations have different categories of datatype. Which of the
declarations is executed by the following call?

CREATE OR REPLACE PACKAGE emp_pkg IS
PROCEDURE find_emp -- 1
(p_employee_id IN NUMBER, p_last_name OUT VARCHAR2);
PROCEDURE find_emp -- 2
(p_job_id IN VARCHAR2, p_last_name OUT VARCHAR2);
PROCEDURE find_emp -- 3
(p_hiredate IN DATE, p_last_name OUT VARCHAR2);

END emp_pkg;

DECLARE v_last_name VARCHAR2(30);
BEGIN emp_pkg.find_emp('IT_PROG', v_last_name); END;

8

Advanced Package Concepts

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Overloading Restrictions

You cannot overload:
• Two subprograms if their formal parameters differ only in data type

and the different data types are in the same category (NUMBER and
INTEGER belong to the same category; VARCHAR2 and CHAR
belong to the same category)

• Two functions that differ only in return type, even if the types are in
different categories

These restrictions apply if the names of the parameters are also the
same. If you use different names for the parameters, then you can
invoke the subprograms by using named notation for the parameters.

The next slide shows an example of this.

9

Advanced Package Concepts

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Overloading: Example 2

Now you invoke a procedure using positional notation:

This fails because ‘Smith’ can be either CHAR or VARCHAR2.
But the following invocation succeeds:

CREATE PACKAGE sample_pack IS
PROCEDURE sample_proc (p_char_param IN CHAR);
PROCEDURE sample_proc (p_varchar_param IN VARCHAR2);

END sample_pack;

BEGIN sample_pack.sample_proc('Smith'); END;

BEGIN sample_pack.sample_proc(p_char_param =>'Smith'); END;

10

Advanced Package Concepts

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me

Overloading: Example 3

In this example, the dept_pkg package specification contains an
overloaded procedure called add_department. The first
declaration takes three parameters that are used to provide data
for a new department record inserted into the department table.
The second declaration takes only two parameters, because this
version internally generates the department ID through an Oracle
sequence.

CREATE OR REPLACE PACKAGE dept_pkg IS

PROCEDURE add_department(p_deptno NUMBER,

p_name VARCHAR2 := 'unknown', p_loc NUMBER := 1700);

PROCEDURE add_department(

p_name VARCHAR2 := 'unknown', p_loc NUMBER := 1700);

END dept_pkg;

11

Advanced Package Concepts

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Overloading: Example 3 (continued)

CREATE OR REPLACE PACKAGE BODY dept_pkg IS
PROCEDURE add_department (p_deptno NUMBER,
p_name VARCHAR2:='unknown', p_loc NUMBER:=1700) IS

BEGIN
INSERT INTO departments(department_id,
department_name, location_id)
VALUES (p_deptno, p_name, p_loc);

END add_department;

PROCEDURE add_department (
p_name VARCHAR2:='unknown', p_loc NUMBER:=1700) IS

BEGIN
INSERT INTO departments (department_id,
department_name, location_id)
VALUES (departments_seq.NEXTVAL, p_name, p_loc);

END add_department;
END dept_pkg;

12

Advanced Package Concepts

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Overloading: Example 3 (continued)

If you call add_department with an explicitly provided
department ID, then PL/SQL uses the first version of the
procedure. Consider the following example:

BEGIN
dept_pkg.add_department(980,'Education',2500);

END;

SELECT * FROM departments
WHERE department_id = 980;

13

Advanced Package Concepts

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Overloading: Example 3 (continued)

If you call add_department with no department ID, then
PL/SQL uses the second version:

BEGIN
dept_pkg.add_department ('Training', 2500);

END;

SELECT * FROM departments
WHERE department_name = 'Training';

14

Advanced Package Concepts

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Overloading and the STANDARD Package

• A package named STANDARD defines the PL/SQL
environment and built-in functions.

• Most built-in functions are overloaded. You have already
seen that TO_CHAR is overloaded. Another example is the
UPPER function:

• You do not prefix STANDARD package subprograms with the
package name.

FUNCTION UPPER (ch VARCHAR2) RETURN VARCHAR2;
FUNCTION UPPER (ch CLOB) RETURN CLOB;

15

Advanced Package Concepts

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
What if you create your own function with the same name as a
STANDARD package function?

For example, you create your own UPPER function. Then you invoke
UPPER(argument). Which one is executed?

Answer: even though your function is in your own schema, the built-
in STANDARD function is executed. To call your own function, you
need to prefix it with your schema-name:

...
BEGIN
v_return_value := your-schema-name.UPPER(argument);

END;

16

Advanced Package Concepts

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Using Forward Declarations
• Block-structured languages (such as PL/SQL) must declare

identifiers before referencing them.
• Example of a referencing problem if award_bonus is public

and calc_rating is private:

• calc_rating is referenced (in award_bonus) before it
has been declared.

CREATE OR REPLACE PACKAGE BODY forward_pkg IS
PROCEDURE award_bonus(...) IS
BEGIN
calc_rating (...); --illegal reference

END;

PROCEDURE calc_rating (...) IS
BEGIN
...

END;
END forward_pkg;

17

Advanced Package Concepts

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Using Forward Declarations
You can solve the illegal reference problem by reversing the order
of the two procedures.

However, coding standards often require that subprograms be kept
in alphabetical sequence to make them easy to find. In this case,
you might encounter problems, as shown in the slide example.

Note: The compilation error for calc_rating occurs only if
calc_rating is a private packaged subprogram. If
calc_rating is declared in the package specification, then it is
already declared as if it was a forward declaration, and its
reference can be resolved by the PL/SQL compiler.

18

Advanced Package Concepts

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Using Forward Declarations
In the package body, a forward declaration is a private
subprogram specification terminated by a semicolon.

CREATE OR REPLACE PACKAGE BODY forward_pkg IS
PROCEDURE calc_rating (...);-- forward declaration

-- Subprograms defined in alphabetical order

PROCEDURE award_bonus(...) IS
BEGIN
calc_rating (...); -- reference resolved!
. . .

END;

PROCEDURE calc_rating (...) IS -- implementation
BEGIN
. . .

END;
END forward_pkg;

19

Advanced Package Concepts

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Using Forward Declarations
• Forward declarations help to:

– Define subprograms in logical or alphabetical order
– Define mutually recursive subprograms. Mutually recursive

programs are programs that call each other directly or
indirectly.

– Group and logically organize subprograms in a package body
• When creating a forward declaration:

– The formal parameters must appear in both the forward
declaration and the subprogram body

– The subprogram body can appear anywhere after the forward
declaration, but both must appear in the same package body.

20

Advanced Package Concepts

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Package Initialization Block
Suppose you want to automatically execute some code every
time you make the first call to a package in your session? For
example, you want to automatically load a tax rate into a package
variable.

If the tax rate is a constant, you can initialize the package
variable as part of its declaration:

But what if the tax rate is stored in a database table ?

CREATE OR REPLACE PACKAGE taxes_pkg IS
g_tax NUMBER := 0.20;
...

END taxes_pkg;

21

Advanced Package Concepts

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Package Initialization Block
Optionally, you can include an un-named block at the end of the
package body. This block automatically executes once and is
used to initialize public and private package variables.

CREATE OR REPLACE PACKAGE taxes_pkg IS
g_tax NUMBER;
... -- declare all public procedures/functions

END taxes_pkg;

CREATE OR REPLACE PACKAGE BODY taxes_pkg IS
... -- declare all private variables
... -- define public/private procedures/functions
BEGIN
SELECT rate_value INTO g_tax
FROM tax_rates
WHERE rate_name = 'TAX';

END taxes_pkg;

22

Advanced Package Concepts

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Restrictions on Using Package Functions in SQL Statements

• Package functions, like standalone functions, can be used in
SQL statements and they must follow the same rules.

• Functions called from:
– A query or DML statement must not end the current transaction,

create or roll back to a savepoint, or alter the system or session
– A query or a parallelized DML statement cannot execute a DML

statement or modify the database
– A DML statement cannot read or modify the table being changed

by that DML statement
Note: A function calling subprograms that break the preceding
restrictions is not allowed.

23

Advanced Package Concepts

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Package Function in SQL: Example 1

CREATE OR REPLACE PACKAGE taxes_pkg IS
FUNCTION tax (p_value IN NUMBER) RETURN NUMBER;

END taxes_pkg;

CREATE OR REPLACE PACKAGE BODY taxes_pkg IS
FUNCTION tax (p_value IN NUMBER) RETURN NUMBER IS
v_rate NUMBER := 0.08;

BEGIN
RETURN (p_value * v_rate);

END tax;
END taxes_pkg;

SELECT taxes_pkg.tax(salary), salary, last_name
FROM employees;

24

Advanced Package Concepts

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Package Function in SQL: Example 2
CREATE OR REPLACE PACKAGE sal_pkg IS
FUNCTION sal (p_emp_id IN NUMBER) RETURN NUMBER;

END sal_pkg;

CREATE OR REPLACE PACKAGE BODY sal_pkg IS
FUNCTION sal (p_emp_id IN NUMBER) RETURN NUMBER IS
v_sal employees.salary%TYPE;

BEGIN
UPDATE employees SET salary = salary * 2
WHERE employee_id = p_emp_id;

SELECT salary INTO v_sal FROM employees
WHERE employee_id = p_emp_id;

RETURN (v_sal);
END sal;

END sal_pkg;

SELECT sal_pkg.sal(employee_id), salary, last_name
FROM employees;

25

Advanced Package Concepts

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Terminology
Key terms used in this lesson include:

Overloading
STANDARD

Forward declaration
Initialization block

26

Advanced Package Concepts

Copyright © 2008, Oracle. All rights reserved.

Summary
In this lesson, you learned to:
• Write packages that use the

overloading feature
• Write packages that use forward

declarations
• Explain the purpose of a package

initialization block
• Identify restrictions on using

packaged functions in SQL
statements

27

Advanced Package Concepts

Copyright © 2008, Oracle. All rights reserved.

Try It / Solve It
The exercises in this lesson cover
the following topics:
• Writing packages that use the

overloading feature
• Writing packages that use

forward declarations
• Identifying restrictions on using

packaged functions in SQL
statements

	Advanced Package Concepts
	What Will I Learn?
	Why Learn It?
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Summary
	Try It / Solve It

