
Copyright © 2009, Oracle. All rights reserved.

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

Semester 1 Final Review

This slide set includes the following topics:
• Handling Exceptions
• Trapping Oracle Server Exceptions
• Trapping User-Defined Exceptions
• Recognizing the Scope of Variables and Exceptions
• Creating Procedures
• Using Parameters in Procedures
• Passing Parameters
• Creating Functions
• Using Functions in SQL Statements
• Reviewing the Data Dictionary
• Managing Procedures and Functions
• Reviewing Object Privileges
• Using Invoker’s Rights

Copyright © 2009, Oracle. All rights reserved.

Handling Exceptions

4

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

An exception occurs when an error is discovered during the
execution of a program that disrupts its normal operation.

What Is an Exception Handler?
An exception handler is code that defines the recovery actions to
be performed when exceptions are raised

(that is, when errors

occur).

When writing code, programmers need to anticipate the types of
errors that can occur during execution of that code. They need to
include exception handlers in their code to address these errors.
In a sense, exception handlers allow programmers to
"bulletproof" their code.

What Is an Exception?

Presenter
Presentation Notes
Instructor Notes

Ask the students to discuss errors that they may have seen in an application. The error can be a handled or unhandled error. Below are some examples:

Entering an incorrect username and/or password

Forgetting to include the @ in an email address

Entering a credit card number incorrectly

Entering an expiration date that has passed

5

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

What types of errors might programmers want to account for
with exception errors?

–

System errors (for example, memory)
–

Data errors (for example, duplicate value in a unique index)
–

User-action errors (for example, data entry error)

Why Is Exception Handling Important?
Exception handling protects the user from errors (frequent
errors can frustrate the user and/or cause the user to quit the
application). It also protects the database from errors (data can
be lost or overwritten).
Major errors take a lot of system resources (if a mistake is
made, correcting the mistake can be costly; users might
frequently call the help desk for assistance with errors). Code is
more readable because you can write error-handling routines in
the same block in which the error occurred.

What Is an Exception Handler? (continued)

6

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

The code does not work as expected and the program terminates
with the following error message.

No data was found for Korea, South

because the country name is
actually stored as Republic of Korea.

DECLARE
v_country_name wf_countries.country_name%TYPE

:= ‘Korea, South’;
v_elevation wf_countries.highest_elevation%TYPE;

BEGIN
SELECT highest_elevation

INTO v_elevation
FROM wf_countries
WHERE country_name = v_country_name;

END;

ORA-01403: no data found

Exceptions in PL/SQL

Presenter
Presentation Notes
Instructor Notes

To confirm the spelling of South Korea in the data, run a statement such as the following:

SELECT country_name FROM wf_countries

WHERE country_name like '%Korea%';

7

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

A block always terminates when PL/SQL raises an exception, but
you can specify an exception handler to perform final actions
before the block ends. The exception section begins with the
keyword EXCEPTION.
DECLARE
v_country_name wf_countries.country_name%TYPE

:= ‘Korea, South';
v_elevation wf_countries.highest_elevation%TYPE;

BEGIN
SELECT highest_elevation INTO v_elevation

FROM wf_countries WHERE country_name = v_country_name;
EXCEPTION
WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT.PUT_LINE ('Country name, '|| v_country_name ||',
cannot be found. Re-enter the country name using the correct
spelling.');

END;

Handling Exceptions With PL/SQL

8

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

When an exception is handled, the PL/SQL program does not
terminate abruptly. When the exception is raised, the control
shifts to the exception section and the handler

in the exception

section is

executed. In the preceding example, the PL/SQL block
terminates with normal, successful completion.

Only one handler is processed by PL/SQL before leaving the
block.

Country name, Korea, South,

Cannot be found. Re-enter he country name using the correct spelling.

Statement processed.

Handling Exceptions With PL/SQL (continued)

Presenter
Presentation Notes
Explain the terms used here. When an error occurs, we say that an exception has been raised. A handler is a specific WHEN clause in the EXCEPTION section.

9

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

The following is another example of an exception being raised
when the select statement in the block attempts to retrieve the
last_name of John.

An exception is raised because more than one John exists in the
data.

DECLARE
v_lname VARCHAR2(15);

BEGIN
SELECT last_name INTO v_lname FROM employees
WHERE first_name='John';
DBMS_OUTPUT.PUT_LINE ('John''s last name is : ‘ ||v_lname);

END;

ORA-01422: exact etch returns more than requested number of rows

Handling Exceptions With PL/SQL (continued)

Presenter
Presentation Notes
There is no exception handler in this block, therefore the block terminates unsuccessfully, returning an ‘unhandled exception’ status code to the calling environment, which then reports the exception as shown.

10

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

The following code includes an exception handler for the
predefined Oracle server error called TOO_MANY_ROWS.

DECLARE
v_lname VARCHAR2(15);

BEGIN
SELECT last_name INTO v_lname

FROM employees WHERE first_name='John';
DBMS_OUTPUT.PUT_LINE ('John''s last name is : '||v_lname);

EXCEPTION
WHEN TOO_MANY_ROWS THEN

DBMS_OUTPUT.PUT_LINE ('Your select statement
retrieved multiple rows. Consider using a
cursor.');

END;

Handling Exceptions With PL/SQL

Presenter
Presentation Notes
In this case we have successfully handled the exception inside the block, so PL/SQL returns a ‘success’ status code to the calling environment, which therefore will report ‘PL/SQL procedure successfully completed’.

11

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

You can handle or "trap" any error by including a corresponding
handler within the exception handling section of the PL/SQL
block.

EXCEPTION
WHEN exception1 [OR exception2 . . .] THEN

statement1;
statement2;
. . .

[WHEN exception3 [OR exception4 . . .] THEN
statement1;
statement2;
. . .]

[WHEN OTHERS THEN
statement1;
statement2;
. . .]

Trapping Exceptions

12

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

Each handler consists of a WHEN clause, which specifies an
exception name, followed by one or more statements to be
executed when that exception is raised. You can include any
number of handlers within an EXCEPTION section to handle
specific exceptions. However, you cannot have multiple
handlers for a single exception. The WHEN OTHERS THEN is an
optional exception-handling clause that traps any exceptions
that have not been explicitly handled. It must be the last
exception handler that is defined.

EXCEPTION
WHEN exception1 [OR exception2 . . .] THEN

statement1;
statement2;
. . .

[WHEN OTHERS THEN
statement1;
statement2;
. . .]

Trapping Exceptions (continued)

13

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

•

Add exception handlers whenever there is any possibility of
an error occurring.

Errors are especially likely during

calculations, string manipulation, and SQL database
operations.

•

Handle named exceptions whenever possible, instead of
using OTHERS in exception handlers. Learn the names and
causes of the predefined exceptions.

•

Test your code with different combinations of bad data to see
what potential errors arise.

•

Write out debugging information in your exception handlers.
•

Carefully consider whether each exception handler should
commit the transaction, roll it back, or let it continue. No
matter how severe the error is, you want to leave the
database in a consistent state and avoid storing any bad data.

Guidelines for Trapping Exceptions

Copyright © 2009, Oracle. All rights reserved.

Trapping Oracle Server Exceptions

15

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

Each of the three types is handled in a slightly different
manner.

Exception Description Instructions for Handling
Predefined
Oracle server
error

One of approximately 20
errors that occur most
often in PL/SQL code

You need not declare these
exceptions. They are
predefined by the Oracle
server and are raised
implicitly.

Non-predefined
Oracle server
error

Any other standard
Oracle server error

Declare within the declarative
section and allow the Oracle
server to raise them implicitly.

User-defined
error

A condition that the
developer determines is
abnormal

Declare within the declarative
section, and raise explicitly.

Three Exception Types

Presenter
Presentation Notes
Exception Types

Some application tools with client-side PL/SQL, such as Oracle Developer Forms, have their own exceptions.

16

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

There are two ways to raise exceptions:
•

Implicitly (automatically) by the Oracle server: An Oracle
error occurs and the associated exception is raised
automatically. For example, if the error ORA-01403 occurs
when no rows are retrieved from the database in a SELECT
statement, then PL/SQL raises the exception
NO_DATA_FOUND.

•

Explicitly by the program: As a developer, depending on the
business functionality your program is implementing, you
might have to explicitly raise an exception. You raise an
exception explicitly by issuing the RAISE statement within
the block. The exception being raised can be either user-

 defined or predefined.

Handling Exceptions with PL/SQL

17

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

Two Types of Oracle Server Error

When an Oracle server error occurs, the Oracle server
automatically raises the associated exception, skips the rest of

 the executable section of the block, and looks for a handler in the
exception section. There are two types of Oracle server errors:

•

Predefined Oracle server errors:

Each of these has a
predefined name.

For example, if the error ORA-01403

occurs when no rows are retrieved from the database in a
SELECT statement, then PL/SQL raises the predefined
exception-name

NO_DATA_FOUND.

•

Non-predefined Oracle server errors: Each of these has a
standard Oracle error number (ORA-nnnnn) and error
message, but not a predefined name. You declare your own
names for these so that you can reference these names in
the exception section.

18

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

•

Reference the predefined name in the exception handling
routine.

•

Sample predefined exceptions:
–

NO_DATA_FOUND
–

TOO_MANY_ROWS
–

INVALID_CURSOR
–

ZERO_DIVIDE

–

DUP_VAL_ON_INDEX

•

For a partial list of predefined exceptions, refer to
plsql_s06_l02_predefined_errors.doc. For a
complete list of predefined exceptions, see the PL/SQL
User’s Guide and Reference.

Trapping Predefined Oracle Server Errors

Presenter
Presentation Notes
Instructor Note

An Oracle Server error is an error which is recognized and raised automatically by the Oracle server. There are many hundreds of such possible errors, and each one has a predefined error number and error message, for example ORA-1422: exact fetch returns more than requested number of rows.

The most common 20 or so server errors have predefined PL/SQL exception names, for example TOO_MANY_ROWS, NO_DATA_FOUND.

19

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

The following example uses the TOO_MANY_ROWS predefined
Oracle Server error. Note that it is not declared in the
DECLARATION section.

DECLARE
v_lname VARCHAR2(15);

BEGIN
SELECT last_name INTO v_lname

FROM employees WHERE first_name='John';
DBMS_OUTPUT.PUT_LINE ('John''s last name is : '||v_lname);

EXCEPTION
WHEN TOO_MANY_ROWS THEN

DBMS_OUTPUT.PUT_LINE (' Your select statement
retrieved multiple rows. Consider using a
cursor.');

END;

Trapping Predefined Oracle Server Errors (continued)

20

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

The following example handles

both the

TOO_MANY_ROWS and
NO_DATA_FOUND and also includes a WHEN OTHERS handler in
case any other error occurs.
DECLARE
v_lname VARCHAR2(15);

BEGIN
SELECT last_name INTO v_lname

FROM employees WHERE first_name='John';
DBMS_OUTPUT.PUT_LINE ('John''s last name is : '||v_lname);

EXCEPTION
WHEN TOO_MANY_ROWS THEN

DBMS_OUTPUT.PUT_LINE (‘Select statement found multiple rows’);

WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT.PUT_LINE (‘Select statement found no rows’);

WHEN OTHERS THEN

DBMS_OUTPUT.PUT_LINE (‘Another type of error occurred’);
END;

Trapping Several Predefined Oracle Server Errors
(continued)

21

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

Non-predefined exceptions are similar to predefined exceptions;
however, they do not have predefined names in PL/SQL.

They

are standard Oracle Server errors and have ORA-

error numbers.
You can create your own names

for them in the DECLARE

section, and associate these names with ORA-

error numbers
using the PRAGMA EXCEPTION_INIT function.

Declarative section

Declare

Name the
exception

Code PRAGMA
EXCEPTION_INIT

EXCEPTION section

Handle the raised
exception

Associate Reference

Trapping Non-Predefined Oracle Server Errors

22

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

•

You can trap a non-predefined Oracle server error

by
declaring it first. The declared exception is raised implicitly.

 In PL/SQL, the PRAGMA EXCEPTION_INIT tells the
compiler to associate an exception name with an Oracle
error number.

•

This allows you to refer to any internal exception by name
and to write a specific handler for it.

Trapping Non-Predefined Oracle Server Errors (continued)

23

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

In the following example, the INSERT statement tries to insert the
value NULL for the department_name column. It fails because
the department_name column definition includes a not null
constraint. There is no predefined error code for inserting nulls.
The way to work around this problem is to create a non-

 predefined exception handler that traps the ORA-1400 error.

BEGIN

INSERT INTO departments
(department_id, department_name) VALUES (280, NULL);

END;

ORA-01400: cannot insert NULL into (“USVA_TEST_SQL01_S01”.”DEPARTMENTS”. “DEPARTMENT_NAME”)

Non-Predefined Error

Presenter
Presentation Notes
There is no predefined PL/SQL name for the ORA-1400 exception, so we need to create our own name for it. The next slide shows how to do this.

24

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

By modifying the previous code to include a non-predefined
handler to trap Oracle server error number 1400, the error is
trapped and handled.

DECLARE

e_insert_excep EXCEPTION;

PRAGMA EXCEPTION_INIT

(e_insert_excep, -01400);

BEGIN

INSERT INTO departments
(department_id, department_name)

VALUES (280, NULL);

EXCEPTION

WHEN e_insert_excep

THEN

DBMS_OUTPUT.PUT_LINE('INSERT FAILED‘);

END;

1
2

3

1.

Declare the name
of the exception in
the declarative
section.

2.

Use the Pragma
to associate the
name with the
error number.

3. Reference the
declared
exception name
within the
corresponding
exception-

 handling routine.

Non-Predefined Error (continued)

25

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

By using two

predefined functions, you can decide what
subsequent actions to take in an EXCEPTION section.
•

SQLERRM returns character data containing the message
associated with the error number.

•

SQLCODE returns the numeric value for the error code

SQLCODE Value Description

0 No exception encountered
1 User-defined exception
+100 NO_DATA_FOUND exception

Negative number Another Oracle server error number

Functions for Trapping Exceptions

Presenter
Presentation Notes
Students may ask: why is the SQLCODE for NO_DATA_FOUND +100 instead of -1403? Answer: some of these error codes are used in other (non-Oracle) databases, and +100 is an internationally-agreed code when no rows are returned from a query.

26

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

You cannot use SQLCODE or SQLERRM directly in an SQL
statement. Instead, you must assign their values to local
variables, then use the variables in the SQL statement, as shown

 in the following example:

DECLARE
v_error_code NUMBER;
v_error_message VARCHAR2(255);

BEGIN
...
EXCEPTION
WHEN OTHERS THEN
ROLLBACK;
v_error_code := SQLCODE ;
v_error_message := SQLERRM ;

INSERT INTO error_log (e_user,e_date,error_code,error_message)

VALUES(USER,SYSDATE,v_error_code,v_error_message);
END;

Functions for Trapping Exceptions

Presenter
Presentation Notes
Instructor Note

SQLCODE and SQLERRM are often used in a WHEN OTHERS handler. Someone (often the Database Administrator) would be responsible for reading the ERROR_LOG table and taking suitable action.

Copyright © 2009, Oracle. All rights reserved.

Trapping User-Defined Exceptions

28

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

The third type of exception is user-defined. Within your program
you might need to define an error not recognized by the
database. Within the PL/SQL block, you name the exception,
define the exception, and handle the exception.

Declarative
section

Name the
exception.

Executable
section

Explicitly raise
the exception by
using the RAISE

statement.

Exception-handling
section

Handle the raised
exception.

Raise ReferenceDeclare

Trapping User-Defined Exceptions

29

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

In the following code, assume that your program prompts the
user for a department number and name so that it can update the
name of the department.

If department 27 does not exist, the above code does not
produce an Oracle error. You need to declare, explicitly raise,
and handle a user-defined exception.

DECLARE
v_name VARCHAR2(20):=‘Accounting';
v_deptno NUMBER := 27;

BEGIN
UPDATE departments
SET department_name = v_name
WHERE department_id = v_deptno;

END;

Trapping User-Defined Exceptions (continued)

Presenter
Presentation Notes
Remind students that an UPDATE or DELETE DML statement is treated as successful by the server even if it modifies no rows. Therefore the Oracle server will not automatically raise an exception in this case. If we want to raise an exception, we must do it ourselves.

30

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

By including the following code, you define an error that is then
handled by the PLSQL compiler. You do this by:
1. Declaring the name of the user-defined exception within the
declarative section.
2. Using the RAISE statement to raise the exception explicitly
within the executable section.
3. Referencing the declared exception within the exception-

 handling section.

Trapping User-Defined Exceptions (continued)

31

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

The following is the completed code.

DECLARE
e_invalid_department EXCEPTION;
v_name VARCHAR2(20):=‘Accounting';
v_deptno NUMBER := 27;

BEGIN
UPDATE departments

SET department_name = v_name
WHERE department_id = v_deptno;

IF SQL%NOTFOUND THEN
RAISE e_invalid_department;

END IF;
COMMIT;

EXCEPTION
WHEN e_invalid_department

THEN DBMS_OUTPUT.PUT_LINE('No such department id.');
ROLLBACK;

END;

1

2

3

Trapping User-Defined Exceptions (continued)

32

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

You can use the RAISE statement to raise a named exception.
You can raise:
•

An exception of your own (that is, a user-defined exception)

•

An Oracle server error

IF v_grand_total=0 THEN
RAISE e_invalid_total;

ELSE

DBMS_OUTPUT.PUT_LINE(v_num_students/v_grand_total);
END IF;

IF v_grand_total=0 THEN
RAISE ZERO_DIVIDE;

ELSE

DBMS_OUTPUT.PUT_LINE(v_num_students/v_grand_total);
END IF;

The RAISE Statement

33

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

You can use the RAISE_APPLICATION_ERROR procedure to
return user-defined error messages from stored subprograms.
The main advantage over RAISE is that the
RAISE_APPLICATION_ERROR allows you to associate your own
error number and meaningful error message with the exception.

•

error_number:

Is a user-specified number for the exception
between –20000 and –20999 reserved by Oracle for
programmer use. These numbers are

never used for

predefined Oracle server errors.
•

Message:

Is the user-specified message up to 2,048 bytes.
•

TRUE | FALSE:

Is an optional Boolean parameter. (If TRUE,
the error is placed on the stack of previous errors. If FALSE,
the default, the error

replaces all previous errors.)

RAISE_APPLICATION_ERROR (error_number,
message[, {TRUE | FALSE}]);

The RAISE_APPLICATION_ERROR Procedure

34

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

You can use the RAISE_APPLICATION_ERROR in two different
places:
•

Executable section

•

Exception section

DECLARE
v_mgr PLS_INTEGER := 123;

BEGIN
DELETE FROM employees

WHERE manager_id = v_mgr;
IF SQL%NOTFOUND THEN

RAISE_APPLICATION_ERROR(-20202,
'This is not a valid manager');

END IF;
EXCEPTION
WHEN OTHERS THEN RAISE_APPLICATION_ERROR(-20203,

‘An error has occurred.’);
END;

The RAISE_APPLICATION_ERROR Procedure (continued)

Copyright © 2009, Oracle. All rights reserved.

Recognizing the Scope of Variables and
Exceptions

36

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

The example shown in the slide has an outer (parent) block
(illustrated in blue) and a nested (child) block (illustrated in

red).

The variable v_outer_variable is declared in the outer block
and the variable v_inner_variable is declared in the inner
block.

DECLARE
v_outer_variable VARCHAR2(20):='GLOBAL VARIABLE';

BEGIN
DECLARE

v_inner_variable VARCHAR2(20):='LOCAL VARIABLE';
BEGIN

DBMS_OUTPUT.PUT_LINE(v_inner_variable);
DBMS_OUTPUT.PUT_LINE(v_outer_variable);

END;
DBMS_OUTPUT.PUT_LINE(v_outer_variable);

END;

Nested Blocks

37

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

The scope of a variable is the portion of the program in which the
variable is declared and is accessible.
The variables v_father_name and v_date_of_birth are
declared in the outer block. Their scope includes the outer and
inner blocks.

The variables v_child_name and v_date_of_birth (shown
in red) are declared in the inner block and are accessible only
within the inner block.

DECLARE
v_father_name VARCHAR2(20):='Patrick';
v_date_of_birth DATE:='20-Apr-1972';
BEGIN
DECLARE
v_child_name VARCHAR2(20):='Mike';
v_date_of_birth DATE:='12-Dec-2002';

…

Variable Scope

38

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

You cannot declare

two variables with the same name in the
same

block. However, you can declare variables with the same

name in two different blocks. The two items represented by the
identifiers are distinct, and any change in one does not affect the
other. It is not recommended to reuse the same name for
variables because it can make confusing code. The scope of the
v_date_of_birth variable declared in the outer block consists
of both blocks. However, it is not visible in the inner block
because the inner block has a local variable with the same name.

DECLARE
v_father_name VARCHAR2(20):='Patrick';
v_date_of_birth DATE:='20-Apr-1972';
BEGIN
DECLARE
v_child_name VARCHAR2(20):='Mike';
v_date_of_birth DATE:='12-Dec-2002';

…

Variable Visibility

39

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

In your code you might want to reference a variable in another
block. This can be done by defining a qualifier (label) to a block.
You can then use this qualifier to access the variables that have
scope but are not visible. In this example, the outer block has the
label, <<outer>>.

<<outer>>
DECLARE
v_father_name VARCHAR2(20):='Patrick';
v_date_of_birth DATE:='20-Apr-1972';

BEGIN
DECLARE

v_child_name VARCHAR2(20):='Mike';
v_date_of_birth DATE:='12-Dec-2002';

BEGIN
DBMS_OUTPUT.PUT_LINE('Date of Birth: ‘

|| outer.v_date_of_birth);
…

Qualifying an Identifier

40

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

You can handle an exception:
•

By trapping it with a handler

•

By propagating it to the calling environment

Exception
raised

Is the
exception
trapped?

yes

no

Handle with
exception
handler

Propagate
to calling

environment

Handling Exceptions

41

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

Include an EXCEPTION section in your PL/SQL program to trap
exceptions. If the exception is raised in the executable section

of

the block, processing is handled by the corresponding exception
handler in the exception section of the block. If PL/SQL
successfully handles the exception, then the exception does not
propagate to the enclosing block or to the calling environment.
The PL/SQL block terminates successfully.

Exception
raised

Is the
exception
trapped?

yes
Execute statements
in the EXCEPTION

section

Terminate
gracefully

no

Propagate
to calling

environment

Trapping Exceptions With a Handler

42

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

If the exception is raised in the executable section of the block
and there is no corresponding exception handler, the PL/SQL
block terminates with failure and the exception is propagated to

 an enclosing block or to the calling environment. The calling
environment can be any application that is invoking the PL/SQL
program.

Terminate
abruptly

Propagate
the

exception
Exception

raised

Is the
exception
trapped?

yes
Execute statements
in the EXCEPTION

section

Terminate
gracefully

no

Trapping Exceptions With a Handler (continued)

43

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

Instead of trapping an exception within the PL/SQL block,
propagate the exception

to allow the calling environment to

handle it. Each calling environment has its own way of displaying
and accessing errors.

Application Express Displays the error number and message to screen

Procedure Builder Displays the error number and message to screen

Oracle Forms
Developer

Accesses error number and message in an
ON-ERROR trigger by means of the ERROR_CODE
and ERROR_TEXT packaged functions

Precompiler
application

Accesses exception number through the SQLCA data
structure

An enclosing PL/SQL
block

If present, traps exception in exception-handling
section of enclosing block

Calling Environments

44

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

If a PL/SQL raises an exception and the current block does not
have a handler for that exception, the exception propagates to
successive enclosing blocks until it finds a handler. If none of

 these blocks handle the exception, an unhandled exception is
passed to the host environment.
When the exception propagates to an enclosing block, the
remaining executable actions in the inner block are bypassed.
One advantage of this behavior is that you can enclose
statements that require their own exclusive error handling in their
own block, while leaving more general exception handling to the
enclosing block.

Propagating Exceptions in a Subblock

45

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

In the example, the
exceptions,
e_no_rows and
e_integrity, are
declared in the outer
block. In the inner
block, if the
e_no_rows
exception is raised,
PL/SQL looks for the
exception to be
handled in the
subblock. Because
the exception is not
handled in the
subblock, the
exception propagates
to the outer block,
where PL/SQL finds
the handler.

DECLARE
. . .
e_no_rows exception;
e_integrity exception;
PRAGMA EXCEPTION_INIT (e_integrity,-2292);

BEGIN
FOR c_record IN emp_cursor LOOP
BEGIN
SELECT ...
UPDATE ...
IF SQL%NOTFOUND THEN
RAISE e_no_rows;

END IF;
END;

END LOOP;
EXCEPTION

WHEN e_integrity THEN ...
WHEN e_no_rows THEN ...

END;

Propagating Exceptions in a Subblock

Copyright © 2009, Oracle. All rights reserved.

Creating Procedures

47

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

Anonymous Blocks
As the name indicates, anonymous blocks are unnamed
executable PL/SQL blocks. Because they are unnamed, they
cannot be stored in the database for later use. While anonymous
blocks can be stored on your PC in a file, the database is not
aware of them so no one else can share them.

Subprograms
Procedures and functions are named PL/SQL blocks, also known
as

subprograms. These subprograms are compiled and stored in

the database. The block structure of the subprograms is much
the same as anonymous blocks. While they can be shared, by
default they are accessible only by their owner.

Differences Between Anonymous Blocks and
Subprograms

48

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

DECLARE (Optional)
Variables, cursors, etc.;

BEGIN (Mandatory)
SQL and PL/SQL statements;

EXCEPTION (Optional)
WHEN Actions in event of errors;

END; (Mandatory)

CREATE [OR REPLACE] PROCEDURE name [parameters] IS|AS
(Mandatory)
Variables, cursors, etc.; (Optional)

BEGIN (Mandatory)
SQL and PL/SQL statements;

EXCEPTION (Optional)
WHEN Actions in event of errors;

END [name]; (Mandatory)

Anonymous Blocks

Subprograms (Procedure)

Syntax Differences:

Presenter
Presentation Notes
Point out that the keyword DECLARE is replaced by CREATE PROCEDURE procedure-name AS. In anonymous blocks, DECLARE states “this is the start of a block”. Because CREATE PROCEDURE states “this is the start of a subprogram”, we do not need (and must not use) DECLARE.

49

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

Anonymous Blocks Subprograms

Unnamed PL/SQL blocks Named PL/SQL blocks

Compiled on every execution Compiled only once

Not stored in the database Stored in the database

Cannot be invoked by other
applications

They are named and therefore can be
invoked by other applications

Do not return values Subprograms called functions must
return values

Cannot take parameters Can take parameters

Differences Between Anonymous Blocks and
Subprograms

50

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

Procedures and functions have many benefits due to the
modularizing of the code:
•

Easy maintenance ― Modifications need only be done once
to improve multiple applications and minimize testing.

•

Code Reuse ― Subprograms are located in one place.
When compiled and validated, they can be used and reused
in any number of applications.

•

Improved data security --

Indirect access to database objects
from unauthorized users can be permitted with security
privileges. By default, subprograms run with the privileges of
the subprogram owner, not the privileges of the user.

Benefits of Subprograms

51

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

•

Data integrity

― Related actions can be grouped into a block
and are performed together (“Statement Processed”) or not
at all.

•

Improved performance ― Compliled

PL/SQL code that is
stored in the shared SQL area cache of the server can be
reused. Subsequent calls to the subprogram avoid compiling

 the code again. Also, many users can share a single copy of
the code in memory.

•

Improved code clarity ― By using appropriate names and
conventions to describe the action of the routines, you can
reduce the need for comments, and enhance the clarity of
the code.

Benefits of Subprograms (continued)

Presenter
Presentation Notes
Improved performance: a subprogram is compiled only once, when it is (re)CREATEd. An anonymous block is compiled (while the user waits) every time it is executed.

52

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

•

A procedure is a named PL/SQL block that can accept
parameters.

•

Generally, you use a procedure to perform an action
(sometimes called a “side-effect”).

•

A procedure is compiled and stored in the database as a
schema object.
–

Shows up in USER_OBJECTS as an object

type of PROCEDURE
–

More details in USER_PROCEDURES
–

Detailed PL/SQL code in USER_SOURCE

What Is a Procedure?

Presenter
Presentation Notes
Section 8 includes a review of these USER_* data dictionary views.

53

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

•

Parameters

are optional
•

Mode defaults to IN

•

Datatype can be either explicit (for example, VARCHAR2)
or implicit with %TYPE

•

Body is the same as an anonymous block

CREATE [OR REPLACE] PROCEDURE procedure_name
[(parameter1 [mode1] datatype1,
parameter2 [mode2] datatype2,
. . .)]

IS|AS
[local_variable_declarations; …]

BEGIN
-- actions;

END [procedure_name];

PL/SQL Block

Syntax

Presenter
Presentation Notes
Students will learn more about arguments and their modes in the next two lessons.

54

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

•

Use CREATE PROCEDURE followed by the name, optional
parameters, and keyword IS or AS.

•

Add the OR REPLACE option to overwrite an existing
procedure.

•

Write a PL/SQL block containing local variables,
 a BEGIN, and an END (or END procedure_name).

Syntax (continued)

55

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

In the following exampl, the procedure inserts a new department
into the dept table. The procedure declares two variables,
v_dept_id and v_dept_name. The procedure uses the
SQL%ROWCOUNT SQL attribute to check whether the row was
successfully inserted.

CREATE OR REPLACE PROCEDURE add_dept
IS
v_dept_id dept.department_id%TYPE;
v_dept_name dept.department_name%TYPE;

BEGIN
v_dept_id := 280;
v_dept_name := ‘Training’;
INSERT INTO dept(department_id,department_name)

VALUES(v_dept_id,v_dept_name);
DBMS_OUTPUT.PUT_LINE('Inserted '||SQL%ROWCOUNT ||'row');

END;

Example

56

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

You can invoke (execute) a procedure from:
•

An anonymous block

•

Another procedure
•

A calling application

Note: You cannot invoke a procedure from inside an SQL
statement,

such as SELECT.

Invoking a Procedure from Application Express
To invoke a procedure in Oracle Application Express, write and
run a small anonymous block that

invokes the procedure.

For example:

BEGIN
add_dept;

END;

Invoking Procedures

57

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

If compilation errors exist, Application Express display them in
the output portion of the SQL Commands window. You then edit
the source code to make corrections.

After you have corrected the code, you must recreate the
procedure. There are two ways to do this:

•

Use a CREATE OR REPLACE PROCEDURE statement to
overwrite the existing code (most common).

•

DROP the procedure first and then execute the CREATE
PROCEDURE statement (less common).

Correcting Errors in Create Procedure Statements

Presenter
Presentation Notes
When a subprogram is CREATEd, the source code is stored in the database (therefore the named code object is created) even if compilation errors occurred. This is why we need …. OR REPLACE …

58

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

When

a procedure has
been created
successfully, you
should save its
definition in case you
need to modify the
code later.

Saving Your Work

59

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

In the Application
Express SQL
Commands
window, click the
Save

button and

enter a name and
optional
description for
your code.

Saving Your Work (continued)

60

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

You can view and reload your code later by clicking the Saved
SQL button in the SQL Commands window.

Saving Your Work (continued)

61

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

If you end up writing PL/SQL procedures for a living, there are
other free tools that make this process easier than using Notepad
as the editor. For example, Oracle tools, such as SQL Developer

 and JDeveloper

assist you by:

•

Color-coding commands vs variables vs constants
•

Highlighting matched and mismatched ((parentheses)

•

Displaying errors more graphically
•

“Prettifying”

code with standard indentations and

capitalization
•

Completing commands when typing

•

Completing column names from tables

Alternative Tools for Developing Procedures

Presenter
Presentation Notes
Developing Procedures

To develop a stored procedure, perform the following steps:

1.	Write the code to create a procedure in an editor or a word processor, and then save it as a SQL script file (typically with an .sql extension).

2.	Load the code into one of the development tools such as SQL*Plus or iSQL*Plus.

Create the procedure in the database. The CREATE PROCEDURE statement compiles and stores source code and the compiled m-code in the database. If compilation errors exist, then the m-code is not stored and you must edit the source code to make corrections.

After successful compilation, execute the procedure to perform the desired action. Use the EXECUTE command from iSQL*Plus or an anonymous PL/SQL block from environments that support PL/SQL.

Copyright © 2009, Oracle. All rights reserved.

Using Parameters in Procedures

63

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

Parameters pass or communicate data between the caller and
the subprogram.
You can think of parameters as a special form of variables,
whose input values are initialized by the calling environment
when the subprogram is called, and whose output values are
returned to the calling environment when the subprogram returns
control to the caller.
By convention, parameters are often named with a “p_”

prefix.

p_input2 Subprogram p_output2
p_input3

p_input1 p_output1

What Are Parameters?

64

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

Consider the following example where a math teacher

needs

to
 change a student's grade from a C to a B in the student

administration system.

The calling system is passing values for student id, class id, and
grade to a subprogram.

Student id is 1023
The math class id is 543
The new grade is B

1023

543

B

What Are Parameters? (continued)

Presenter
Presentation Notes
Answer: normally you would not need to know the old (before) value. The next slide shows the procedure code.

65

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

The

change_grade procedure accepts three parameters:
p_student_id, p_class_id, and p_grade. These parameters
act like local variables in the change_grade procedure.

PROCEDURE change_grade (p_student_id IN VARCHAR2,
p_class_id IN VARCHAR2, p_grade IN VARCHAR2) IS
BEGIN
…
UPDATE grade_table SET grade= 'B'

WHERE student_id= 1023 AND class_id= 543 ;
…
END;

1023 543
B

Student id is 1023
The math class id is 543
The new grade is B

1023

543

B

What Are Parameters? (continued)

66

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

Parameters are commonly referred to as arguments. However,
arguments are more appropriately thought of as the actual values

 assigned to the parameter variables when the subroutine is
called at runtime.
In the previous example, 1023 is an argument passed in to the
p_student_id parameter.

Even though parameters are a kind of variable, the IN parameter
 arguments act as constants and cannot be changed by the

subprogram.

Student id is 1023
The math class id is 543
The new grade is B

1023

543

B

What Are Arguments?

Presenter
Presentation Notes
Parameter means the name, argument means the value.

67

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

The example shows a procedure with two parameters. Running
this first statement creates the raise_salary procedure in the
database. The second example executes the procedure, passing
the arguments 176 and 10

to the two parameters.

CREATE OR REPLACE PROCEDURE raise_salary
(p_id IN employees.employee_id%TYPE,
p_percent IN NUMBER)

IS
BEGIN
UPDATE employees

SET salary = salary * (1 + p_percent/100)
WHERE employee_id = p_id;

END raise_salary;

BEGIN raise_salary(176,10); END;

Creating Procedures With Parameters

68

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

To invoke a procedure

from Application Express, create an
anonymous block and

use a direct call inside the

executable

section of the block. Where you want to call the new procedure,
enter the procedure name and parameter values (arguments).
For example:

The arguments must be entered in the same order as they are
declared in the procedure.

BEGIN
raise_salary (176, 10);

END;

Invoking Procedures With Parameters

69

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

To invoke a procedure from another procedure, use a direct call
inside an executable section of the block. At the location of
calling the new procedure, enter the procedure name and
parameter’s

arguments.

CREATE OR REPLACE PROCEDURE process_employees
IS

CURSOR emp_cursor IS
SELECT employee_id
FROM employees;

BEGIN
FOR v_emp_rec IN emp_cursor
LOOP
raise_salary(v_emp_rec.employee_id, 10);

END LOOP;
COMMIT;

END process_employees;

Invoking Procedures With Parameters (continued)

Presenter
Presentation Notes
Invoking Procedures with Parameters

In this example, the PROCESS_EMPS stored procedure uses a cursor to process all the records in the EMPLOYEES table and passes each employee’s ID to the RAISE_SALARY procedure, which results in a 10% salary increase across the company.

70

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

There are two types of parameters:

Formal

and Actual.
A parameter-name declared in the procedure heading is called
a formal parameter. The corresponding parameter-name (or
value) in the calling environment is called an actual parameter.

p_emp_id is a formal parameter and v_emp_id is an actual
parameter.

CREATE OR REPLACE PROCEDURE fetch_emp
(p_emp_id IN employees.employee_id%TYPE) IS ...

END;
...
fetch_emp(v_emp_id);

Types of Parameters

Presenter
Presentation Notes
p_emp_id is the formal parameter and emp_id is the actual parameter. We make the distinction because the names can be different (as in this example). However, the datatypes must be compatible.

71

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

Formal parameters are variables that are declared in the
parameter list of a subprogram specification. In the following
example, in the procedure raise_sal, the identifiers p_id and
p_sal represent formal parameters.

Notice that the formal parameter datatypes do not have sizes.
For instance p_sal is NUMBER, not NUMBER(6,2).

CREATE PROCEDURE raise_sal
(p_id IN NUMBER, p_sal IN NUMBER) IS

BEGIN ...
END raise_sal;

Formal Parameters

72

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

Actual parameters can be literal values, variables, or expressions
that are provided in the parameter list of a called subprogram. In
the following example, a call is made to raise_sal, where the
a_emp_id variable provides the actual parameter value for the
p_id formal parameter and 2000 is supplied as the actual
parameter value for p_sal.

Actual parameters:
•

Are associated with formal parameters during the
subprogram call

•

Can also be expressions, as in the following example:
 raise_sal(a_emp_id, raise+100);

a_emp_id := 100;
raise_sal(a_emp_id, 2000);

Actual Parameters

73

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

The formal and actual parameters should be of compatible data
types. If necessary, before assigning the value, PL/SQL converts

 the data type of the actual parameter value to that of the formal
parameter.
For example, you can pass in a salary of

'1000.00' in single

quotes, so it is coming in as the letter 1 and the letters zero etc.,
which gets converted into the number one thousand. This is
slower and should be avoided if possible.
You can find out the datatypes that are expected by using the
command DESCRIBE proc_name.

Formal and Actual Parameters

Copyright © 2009, Oracle. All rights reserved.

Passing Parameters

75

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

Parameter modes are specified in the formal parameter
declaration, after the parameter name and before its data type.
Parameter-passing modes:

–

An IN parameter (the default) provides values for a
subprogram to process.

–

An OUT parameter returns a value to the caller.
–

An IN OUT parameter supplies an input value, which can be
returned (output) as a modified value.

Modes

IN (default)

OUT

IN OUT

Calling
environment

Procedure

Procedural Parameter Modes

76

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

CREATE PROCEDURE procedure(param [mode] datatype)
...

CREATE OR REPLACE PROCEDURE raise_salary
(p_id IN employees.employee_id%TYPE,
p_percent IN NUMBER)

IS
BEGIN
UPDATE employees

SET salary = salary * (1 + p_percent/100)
WHERE employee_id = p_id;

END raise_salary;

The IN mode Is the Default if No Mode Is Specified

77

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

CREATE OR REPLACE PROCEDURE query_emp
(p_id IN employees.employee_id%TYPE,
p_name OUT employees.last_name%TYPE,
p_salary OUT employees.salary%TYPE) IS

BEGIN
SELECT last_name, salary INTO p_name, p_salary
FROM employees
WHERE employee_id = p_id;

END query_emp;

DECLARE
a_emp_name employees.last_name%TYPE;
a_emp_sal employees.salary%TYPE;

BEGIN
query_emp(178, a_emp_name, a_emp_sal); ...

END;

The procedure accepts the value 178 for employee ID and retrieves the
name and salary of the employee with ID 178 into the two OUT parameters.

Using OUT Parameters: Example

78

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

Use PL/SQL variables that are displayed

with calls to the
DBMS_OUTPUT.PUT_LINE procedure.

Name: Grant
Salary: 7700

DECLARE
a_emp_name employees.last_name%TYPE;
a_emp_sal employees.salary%TYPE;

BEGIN
query_emp(178, a_emp_name, a_emp_sal);
DBMS_OUTPUT.PUT_LINE('Name: ' || a_emp_name);
DBMS_OUTPUT.PUT_LINE('Salary: ' || a_emp_sal);

END;

Attempting to use or read OUT parameters inside the procedure that
declares them results in a compilation error. The OUT parameters can be
assigned values only in the body of the procedure in which they are
declared.

Viewing OUT Parameters in Application Express

79

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

'(800)633-0575''8006330575'

CREATE OR REPLACE PROCEDURE format_phone
(p_phone_no IN OUT VARCHAR2) IS

BEGIN
p_phone_no := '(' || SUBSTR(p_phone_no,1,3) ||

')' || SUBSTR(p_phone_no,4,3) ||
'-' || SUBSTR(p_phone_no,7);

END format_phone;

phone_no <before the call> phone_no <after the call>

Using an IN OUT parameter, you pass a value into a procedure
that can be updated

within the procedure. The actual parameter

value supplied from the calling environment can return as either
 the original unchanged value or a new value that is set within the

procedure. An IN OUT parameter acts as an initialized variable.

Using IN OUT Parameters:

80

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

The following code creates an anonymous block that

declares
a_phone_no, assigns the unformatted phone number to it, and
passes it as an actual parameter to the FORMAT_PHONE
procedure. The procedure is executed and returns an updated
string in the a_phone_no variable, which is then displayed.

DECLARE
a_phone_no VARCHAR2(13);

BEGIN
a_phone_no := '8006330575' ;
format_phone (a_phone_no);
DBMS_OUTPUT.PUT_LINE(‘The formatted phone
number is: ‘ || a_phone_no);

END;

Using the previous IN OUT example

81

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

Can be assigned a
default value

Cannot be
assigned
a default value

Cannot be assigned
a default value

Must be a variableActual parameter can
be a literal, expression,
constant, or initialized
variable

Must be a
variable

Initialized variableUninitialized
variable

Formal parameter acts
as a constant

Passed into
subprogram; returned
to calling environment

Returned to
calling
environment

Value is passed into
subprogram

Default mode Must be
specified

Must be specified
IN OUTOUTIN

Summary of Parameter Modes

Presenter
Presentation Notes
Students will learn about default values for IN parameters later in this lesson.

82

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

There are three ways of passing parameters from the calling
environment:
•

Positional: Lists the actual parameters in the same order as
the formal parameters

•

Named: Lists the actual parameters in arbitrary order and
uses the association operator (‘=>' which is an equal and an
arrow together) to associate a named formal parameter with
its actual parameter

•

Combination: Lists some of the actual parameters as
positional (no special operator) and some as named (with
the => operator). When using the combination notation,
positional notation parameters must be listed before named
notation parameters.

You must provide a value for each parameter unless the
formal parameter is assigned a default value.

Syntax for Passing Parameters

83

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

•

Passing by positional notation:

•

Passing by named notation:

•

Passing by combination notation:

CREATE OR REPLACE PROCEDURE add_dept(
p_name IN departments.department_name%TYPE,
p_loc IN departments.location_id%TYPE) IS

BEGIN
INSERT INTO departments(department_id,

department_name, location_id)
VALUES (departments_seq.NEXTVAL, p_name, p_loc);

END add_dept;

add_dept (‘EDUCATION', 1400);

add_dept (p_loc=>1400, p_name=>'EDUCATION');

add_dept ('EDUCATION', p_loc=>1400);

Parameter Passing: Examples

84

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

You can assign a default value for formal IN parameters. This
provides flexibility when passing parameters.

The code shows two ways of assigning a default value to an IN
parameter. The two ways are the assignment operator (:=) or the
DEFAULT option.

CREATE OR REPLACE PROCEDURE add_dept(
p_name departments.department_name%TYPE :='Unknown',
p_loc departments.location_id%TYPE DEFAULT 1400)
IS
BEGIN
INSERT INTO departments (...)
VALUES (departments_seq.NEXTVAL, p_name, p_loc);

END add_dept;

Using the DEFAULT Option for IN Parameters

85

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

The following are three ways of invoking the add_dept
procedure:
•

The first example assigns the default values for each
parameter.

•

The second example illustrates a combination of position
and named notation to assign values. In this case, using
named notation is presented as an example.

•

The last example uses the default value for the p_name
parameter and the supplied value for the p_loc parameter.
add_dept;
add_dept ('ADVERTISING', p_loc => 1400);
add_dept (p_loc => 1200);

Using the DEFAULT Option for Parameters

Presenter
Presentation Notes
Instructor Notes:

In Application Express, DESCRIBE procedure-name does not show which parameters have default values.

Some other languages allow something like add_dept(,1200) where the comma indicates the missing parm. PL/SQL does not.

86

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

•

You cannot assign default values to OUT and IN OUT
parameters in the header, but you can in the body of the
procedure.

•

Usually, you can use named notation to override the default
values of formal parameters. However, you cannot skip
providing an actual parameter if there is no default value
provided for a formal parameter.

•

A parameter inheriting a DEFAULT value is different from
 NULL.

Guidelines for Using the DEFAULT Option for Parameters

Presenter
Presentation Notes
Instructor Note

The named notation for passing parameters is especially useful when the called procedure contains many IN parameters, many of which have default values. Imagine a procedure which declares 10 İN parameters, all of which have default values. We want to call the procedure, overriding the default value only for the last parameter. We can simply code:

 …. procedure_name(last_parameter_name => value);

Using the positional notation, all ten values must be passed, and the default values could not be used.

Copyright © 2009, Oracle. All rights reserved.

Creating Functions

88

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

•

A function is a named PL/SQL block (a subprogram) that can
accept optional IN parameters

and must return a single

value.

•

In general, you use a function to compute a value.

•

Functions are

stored in the database as schema objects for
repeated execution.

What Is a Stored Function?

89

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

•

A function can be called as part of an SQL expression or as
part of a PL/SQL expression.
–

Certain return types, for example, Boolean, prevent a function
from being called as part of a SELECT.

•

In SQL expressions, a function must obey specific rules to
control side effects. Side effects to be avoided are:
–

Any kind of DML or DDL
–

COMMIT or ROLLBACK
–

Altering global variables
•

In PL/SQL expressions, the function identifier acts like a
variable whose value depends on the parameters passed to it.

What Is a Stored Function? (continued)

Presenter
Presentation Notes
Instructor note: If you disregard the caution above and do a DML, often the message you get is “Mutating table,” covered in the next chapter.

90

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

The PL/SQL block must have at least one RETURN statement.

The header is like a PROCEDURE header with two differences:
1.

The mode should only be IN

2.

The RETURN clause is instead of an OUT mode.

CREATE [OR REPLACE] FUNCTION function_name
[(parameter1 [mode1] datatype1, ...)]
RETURN datatype
IS|AS
[local_variable_declarations; …]
BEGIN
-- actions;
RETURN expression;

END [function_name];

PL/SQL Block

Header

Syntax for Creating Functions

91

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

•

A function is a PL/SQL block that returns a single value. A
RETURN statement must be provided to return a value with a
data type that is consistent with the function declaration type.

•

You create new functions with the CREATE [OR REPLACE]
FUNCTION statement, which can declare a list of
parameters, must return exactly one value, and must define
the actions to be performed by the standard PL/SQL block.

Syntax for Creating Functions (continued)

92

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

•

Create the function:

•

Invoke the function as an expression or as a parameter
value:

CREATE OR REPLACE FUNCTION get_sal
(p_id employees.employee_id%TYPE)
RETURN NUMBER

IS
v_sal employees.salary%TYPE := 0;

BEGIN
SELECT salary
INTO v_sal
FROM employees
WHERE employee_id = p_id;
RETURN v_sal;

END get_sal;
/

... v_salary := get_sal(100);

Stored Function With a Parameter

93

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

CREATE OR REPLACE FUNCTION get_sal
(p_id employees.employee_id%TYPE)
RETURN NUMBER IS
v_sal employees.salary%TYPE := 0;

BEGIN
SELECT salary INTO v_sal
FROM employees WHERE employee_id = p_id;

RETURN v_sal;
EXCEPTION
WHEN NO_DATA_FOUND THEN RETURN NULL;

END get_sal;

Returns Can Be in Both BEGIN and/or From EXCEPTION
Sections

Presenter
Presentation Notes
Instructor note: from a business standpoint, do you want this function to return a null or an error in this case? It depends! Your call!

94

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

Ways to Invoke (or Execute) Functions With Parameters

•

Invoke as part of a PL/SQL expression, using a local variable
to store

the returned result:

•

Use as a parameter to another subprogram:

•

Use in an SQL statement (subject to restrictions):

... DBMS_OUTPUT.PUT_LINE(get_sal(100));

SELECT job_id, get_sal(employee_id) FROM employees;

DECLARE v_sal employees.salary%type;
BEGIN
v_sal := get_sal(100); ...

END;
A

C

B

Presenter
Presentation Notes
Instructor Note

When a function is used in a SQL statement, it executes once for each row processed by the statement, just like Oracle-defined single-row functions such as UPPER, LOWER, ROUND and so on.

95

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

If functions are designed thoughtfully, they can be powerful
constructs. Functions can be invoked in the following ways:

•

As part of PL/SQL expressions: (A) uses a local
variable in an anonymous block to hold the returned
value from a function.

•

As a parameter to another subprogram: (B)
demonstrates this usage. The get_sal function with all
its arguments is nested in the parameter required by the
DBMS_OUTPUT.PUT_LINE procedure.

•

As an expression in a SQL statement: (C) shows how a
function can be used as a single-row function in an SQL
statement.

Ways to Call Functions With Parameters

96

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

Most functions have parameters, but they are optional. The
following are system functions USER and SYSDATE without
parameters.
•

Invoke as part of a PL/SQL expression, using a local variable
to obtain the result:

•

Use as a parameter to another subprogram:

•

Use in an SQL statement (subject to restrictions):

... DBMS_OUTPUT.PUT_LINE(USER);

SELECT job_id, SYSDATE-hiredate FROM employees;

DECLARE v_today DATE;
BEGIN
v_today := SYSDATE; ...

END;

Invoking Functions Without Parameters

Presenter
Presentation Notes
Instructor note: USER and SYSDATE can have optional parms. And there are other functions that do not need parms such as LOCALTIMESTAMP. Technically these functions are part of a package SYS.STANDARD, and as such they are not exactly like the stand-alone functions shown so far.

97

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

Try things

quickly: Functions allow you to temporarily
display a value in a new format: a different case, annually vs
monthly (times 12), concatenated, or with substrings.
Extend functionality: Add new features, such as spell
checking and parsing.
Restrictions: PL/SQL types do not completely overlap with
SQL types. What is fine for PL/SQL (for example, BOOLEAN,
RECORD) is invalid for a SELECT.
Restrictions: PL/SQL sizes are not the same as SQL sizes.
For example, a PL/SQL VARCHAR2 variable can be up to 32
KB, whereas an SQL VARCHAR2 column can be only up to 4
KB.

Benefits and Restrictions That Apply to Functions

98

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

Procedures

Functions

CREATE [OR REPLACE] PROCEDURE name [parameters] IS|AS (Mandatory)
Variables, cursors, etc. (Optional)

BEGIN (Mandatory)
SQL and PL/SQL statements;

EXCEPTION (Optional)
WHEN exception-handling actions;

END [name]; (Mandatory)

CREATE [OR REPLACE] FUNCTION name [parameters] (Mandatory)
RETURN datatype IS|AS (Mandatory)
Variables, cursors, etc. (Optional)

BEGIN (Mandatory)
SQL and PL/SQL statements;
RETURN ...; (One Mandatory, more optional)

EXCEPTION (Optional)
WHEN exception-handling actions;

END [name]; (Mandatory)

Differences Between Procedures and Functions

99

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

Both

can have zero or more IN parameters that can be
transferred to and from the calling environment.
Both

have the standard block structure including exception

handling.

Procedures
Execute as a PL/SQL
statement
Do not contain RETURN
clause in the header
Can return values (if any)
in output parameters
Can contain a RETURN
statement without a value

Functions
Invoke as part of an
expression
Must contain a RETURN
clause in the header
Must return a single value

Must contain at least one
RETURN statement

Differences/Similarities Between Procedures and
Functions

Presenter
Presentation Notes
Instructor note: Many programmers choose to not handle the exceptions in the functions but rather to pass them to the calling environment, typically a procedure.

100

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

Procedures
•

You create a procedure to store a series of actions for later
execution. A procedure does not have to return a value. A
procedure can call a function to assist with its actions.

 Note: A procedure containing a single OUT parameter might
be better rewritten as a function returning the value.

Functions
•

You create a function when you want to compute a value
that must be returned to the calling environment. Functions
typically return only a single value, and the value is returned
through a RETURN statement. The functions used in SQL
statements should not use OUT or IN OUT modes. Although
a function using OUT can be used in a PL/SQL procedure or
block, it cannot be used in SQL statements.

Differences Between Procedures and Functions

Copyright © 2009, Oracle. All rights reserved.

Using Functions in SQL Statements

102

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

•

In the WHERE clause of a SELECT statement, functions can
increase efficiency by eliminating unwanted rows before the
data is sent to the application

•

Can manipulate data values

•

User-defined functions in particular can extend SQL where
activities are too complex, too awkward, or unavailable with
regular SQL

Advantages of Functions in SQL Statements

103

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

Function created:

CREATE OR REPLACE FUNCTION tax(p_value IN NUMBER)
RETURN NUMBER IS

BEGIN
RETURN (p_value * 0.08);

END tax;

SELECT employee_id, last_name, salary, tax(salary)
FROM employees
WHERE department_id = 50;

EMPLOYEE_ID LAST_NAME SALARY TAX(SALARY)
124 Mourgos 5800 464

141 Rajs 3500 280

142 Davies 3100 248
143 Matos 2600 208

144 Vargas 2500 200

Functions in SQL Expressions:

Presenter
Presentation Notes
Instructor note: While this may seem like a trivial function (“Why not just hard-code the *.08 in there?”) it is actually a great idea. Suppose you use this tax function in a thousand places in a million lines of code in a huge application, and then the IRS raises the tax to 8.5%. Now you only have to change one line of code and the whole application is up to speed with the new tax.

Alternatively, this tax rate change can be accomplished with a global variable created in a package spec, but that won’t be covered until later.

104

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

User-defined functions act like built-in single-row functions and
can be used in:
•

The SELECT list or clause of a query

•

Conditional expressions of the WHERE and HAVING clauses
•

The ORDER BY and GROUP BY clauses of a query

•

The VALUES clause of the INSERT statement
•

The SET clause of the UPDATE statement.

A PL/SQL user-defined function

can be called from any SQL
expression where a built-in single-row function can be called.

SELECT employee_id, tax(salary)
FROM employees
WHERE tax(salary) > (SELECT MAX(tax(salary))

FROM employees
WHERE department_id = 30)

ORDER BY tax(salary) DESC;

Locations to Call User-Defined Functions

105

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

•

User-defined functions that are callable from SQL
expressions must:
–

Accept only IN parameters with valid SQL data types, not
PL/SQL-specific types, such as BOOLEAN or %ROWTYPE

–

Not

exceed SQL size limits (VARCHAR2 of 32 KB versus 4 KB)
–

Return valid SQL data types, not PL/SQL-specific types (same
as above)

•

When calling functions in SQL statements:
–

Parameters must be specified with positional notation. Named
notation (=>) is not

allowed.

Restrictions on Calling Functions from SQL Expressions

106

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

Functions called from:
•

A SELECT statement cannot contain DML statements

•

An UPDATE or DELETE statement on a table cannot query or
contain DML on the same table

•

SQL statements cannot end transactions (that is, cannot
execute COMMIT or ROLLBACK operations)

•

SQL statements cannot issue DDL (for example, CREATE
TABLE) or DCL (for example, ALTER SESSION) because
they also do an implicit COMMIT

Note: Calls to subprograms that break these restrictions are also
not allowed in the function.

Controlling Side Effects When Calling Functions From
SQL Expressions

107

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

CREATE OR REPLACE FUNCTION dml_call_sql(p_sal NUMBER)
RETURN NUMBER IS

BEGIN
INSERT INTO employees(employee_id, last_name,

email, hire_date, job_id, salary)
VALUES(1, 'Frost', 'jfrost@company.com',

SYSDATE, 'SA_MAN', p_sal);
RETURN (p_sal + 100);

END;

UPDATE employees
SET salary = dml_call_sql(2000)

WHERE employee_id = 170;

ORA-04091: table USVA_TEST_SQL01_S01.EMPLOYEES is mutating, trigger/function may not see it

Restrictions on Calling Functions From SQL:

108

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

•

In the following example, the query_call_sql function
queries the EMPLOYEES table:

•

When invoked from the following DML statement, it returns
the “mutating table”

error message similar to the error

message shown in the previous slide:

CREATE OR REPLACE FUNCTION query_max_sal (p_dept_id NUMBER)
RETURN NUMBER IS
v_num NUMBER;
BEGIN

SELECT MAX(salary) INTO v_num FROM employees
WHERE department_id = p_dept_id;

RETURN (v_num);
END;

UPDATE employees SET salary = query_max_sal(department_id)
WHERE employee_id = 170;

Restrictions on Calling Functions From SQL: Example

Copyright © 2009, Oracle. All rights reserved.

Review of the Data Dictionary

110

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

How Can You Read the Dictionary?

There are three classes of table from which you can SELECT to
view information from the Dictionary:

•

The USER_* tables contain information about objects that

you own,
usually because you created them. Examples: USER_TABLES,
USER_INDEXES.

•

The ALL_* tables contain information about objects that

you have
privileges to use. These include the USER_* information as a subset,
because you always have privileges to use the objects that

you own.
Examples: ALL_TABLES, ALL_INDEXES.

•

The DBA_* tables contain information about everything in the
database, no matter who owns them. Normally, only the Database
Administrator can use the DBA_* tables. Examples: DBA_TABLES,
DBA_INDEXES.

Presenter
Presentation Notes
Point out that you are not allowed to see information about objects which you are not privileged to use – not even the fact that they exist. This is why the three classes of table are provided.

111

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

Viewing Information in the Dictionary

Although you are not allowed to modify the dictionary yourself,
you can DESCRIBE and SELECT from Dictionary tables:

DESCRIBE ALL_TABLES

SELECT table_name, owner FROM ALL_TABLES;

SELECT object_type, COUNT(*) FROM USER_OBJECTS
GROUP BY object_type;

SELECT object_type, object_name FROM USER_OBJECTS;

112

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

Using the Super-View Dictionary

There are several hundred Dictionary tables and no-one can
remember the names of all of them. You don’t have to!

There is a super-view called DICTIONARY (or DICT for short),
 which lists all the Dictionary tables.

You can use DICT like a Web Search engine (such as Google) to
show the names and descriptions (comments) of a relevant
subset of Dictionary tables.

The next slide shows how to do this.

Presenter
Presentation Notes
Instructor Note

DICT is a public database synonym for DICTIONARY. Either can be used.

113

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

Using the Super-View Dictionary

First try:

You will see that there are more than a hundred USER_* tables.
Can you remember which one of them shows you information about
which table columns are indexed? Most people can’t!

You

can reasonably assume that all Dictionary tables that

describe
indexes have names containing the substring ‘IND’. So:

Now you can see that the table you want is USER_IND_COLUMNS.

SELECT COUNT(*) FROM DICT WHERE table_name LIKE ‘USER%';

SELECT * FROM DICT WHERE table_name LIKE ‘USER%IND%';

Copyright © 2009, Oracle. All rights reserved.

Managing Procedures and Functions

115

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

PROCEDURE
PROC1 ...
IS
...
BEGIN
...
PROC2(arg1);

...
EXCEPTION
...
END PROC1;

Calling procedure Called procedure
PROCEDURE
PROC2 ...
IS
...
BEGIN
...
EXCEPTION
...
END PROC2;

Exception raised

Exception handled

Control returns
to calling
procedure

Handled Exceptions

Presenter
Presentation Notes
Handled Exceptions

When you develop procedures that are called from other procedures, you should be aware of the effects that handled and unhandled exceptions have on the transaction and the calling procedure.

When an exception is raised in a called procedure, the control immediately goes to the exception section of that block. An exception is considered handled if the exception section provides a handler for the exception raised.

When an exception occurs and is handled, the following code flow takes place:

1.	The exception is raised.

2.	Control is transferred to the exception handler.

3.	The block is terminated.

4.	The calling program/block continues to execute as if nothing has happened.

If a transaction was started (that is, if any data manipulation language [DML] statements executed before executing the procedure in which the exception was raised), the transaction is unaffected. A DML operation is rolled back if it was performed within the procedure before the exception.

Note: You can explicitly end a transaction by executing a COMMIT or ROLLBACK operation in the exception section.

116

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

CREATE PROCEDURE create_departments IS
BEGIN
add_department('Media', 100, 1800);
add_department('Editing', 99, 1800);
add_department('Advertising', 101, 1800);

END;

CREATE OR REPLACE PROCEDURE add_department(
p_name VARCHAR2, p_mgr NUMBER, p_loc NUMBER) IS

BEGIN
INSERT INTO DEPARTMENTS (department_id,
department_name, manager_id, location_id)

VALUES (DEPARTMENTS_SEQ.NEXTVAL, p_name, p_mgr, p_loc);
DBMS_OUTPUT.PUT_LINE('Added Dept: '||p_name);

EXCEPTION
WHEN OTHERS THEN
DBMS_OUTPUT.PUT_LINE('Err: adding dept: '||p_name);

END;

Handled Exceptions: Example

Presenter
Presentation Notes
Handled Exceptions: Example

The two procedures in the example are the following:

The add_department procedure creates a new department record by allocating a new department number from an Oracle sequence, and sets the department_name, manager_id, and location_id column values using the name, mgr, and loc parameters, respectively.

The create_departments procedure creates more than one department by using calls to the add_department procedure.

The add_department procedure catches all raised exceptions in its own handler. When create_departments is executed, the following output is generated:

Added Dept: Media

Err: Adding Dept: Editing

Added Dept: Advertising

The Editing department with manager_id of 99 is not inserted because of a foreign key integrity constraint violation on the manager_id. Because the exception was handled in the add_department procedure, the create_department procedure continues to execute. A query on the DEPARTMENTS table where the location_id is 1800 shows that Media and Advertising are added, but not the Editing record.

117

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

PROCEDURE
PROC1 ...
IS
...
BEGIN
...
PROC2(arg1);

...
EXCEPTION
...
END PROC1;

Calling procedure

Control returned
to exception

section of calling
procedure

Called procedure
PROCEDURE
PROC2 ...
IS
...
BEGIN
...
EXCEPTION
...
END PROC2;

Exception raised

Exception not
handled

Exceptions Not Handled

Presenter
Presentation Notes
Exceptions Not Handled

As discussed, when an exception is raised in a called procedure, control immediately goes to the exception section of that block. If the exception section does not provide a handler for the raised exception, then it is not handled. The following code flow occurs:

1.	The exception is raised.

2.	The block terminates because no exception handler exists; any DML operations performed within the procedure are rolled back.

3.	The exception propagates to the exception section of the calling procedure. That is, control is returned to the exception section of the calling block, if one exists.

If an exception is not handled, then all the DML statements in the calling procedure and the called procedure are rolled back along with any changes to any host variables. The DML statements that are not affected are statements that were executed before calling the PL/SQL code whose exceptions are not handled.

118

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

CREATE OR REPLACE PROCEDURE create_departments_noex IS
BEGIN
add_department_noex('Media', 100, 1800);
add_department_noex('Editing', 99, 1800);
add_department_noex('Advertising', 101, 1800);

END;

CREATE OR REPLACE PROCEDURE add_department_noex(
p_name VARCHAR2, p_mgr NUMBER, p_loc NUMBER) IS

BEGIN
INSERT INTO DEPARTMENTS (department_id,
department_name, manager_id, location_id)

VALUES (DEPARTMENTS_SEQ.NEXTVAL, p_name, p_mgr, p_loc);
DBMS_OUTPUT.PUT_LINE('Added Dept: '||p_name);

END;

Exceptions Not Handled: Example

Presenter
Presentation Notes
Exceptions Not Handled: Example

The code example in the slide shows add_department_noex, which does not have an exception section. In this case, the exception occurs when the Editing department is added. Because of the lack of exception handling in either of the subprograms, no new department records are added into the DEPARTMENTS table. Executing the create_departments_noex procedure produces a result that is similar to the following:

Added Dept: Media

BEGIN create_departments_noex; END;

*

ERROR at line 1:

ORA-02291: integrity constraint (ORA1.DEPT_MGR_FK) violated - parent key not

found

ORA-06512: at "ORA1.ADD_DEPARTMENT_NOEX", line 4

ORA-06512: at "ORA1.CREATE_DEPARTMENTS_NOEX", line 4

ORA-06512: at line 1

Although the results show that the Media department was added, its operation is rolled back because the exception was not handled in either of the subprograms invoked.

119

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

You can remove a procedure

or function

that is stored in the
database.
•

Syntax:

•

Examples:

DROP {PROCEDURE procedure_name| FUNCTION function_name}

DROP PROCEDURE raise_salary;

DROP FUNCTION get_sal;

Removing Procedures and Functions

120

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

The source code for PL/SQL subprograms is stored in the data
dictionary tables. The source code is stored in the dictionary even
when the PL/SQL subprogram did not compile successfully.

•

The USER_OBJECTS table contains the names and types of
procedures and functions.

•

The USER_SOURCE table contains source code for all of the
subprograms that you own.

•

The ALL_SOURCE table contains source code for all the
subprograms that you have privileges to invoke.

Viewing Procedures/Functions in the Data Dictionary

Presenter
Presentation Notes
Viewing Procedures in the Data Dictionary

You cannot display the source code for Oracle PL/SQL built-in packages, or PL/SQL whose source code has been wrapped by using a WRAP utility. The WRAP utility converts the PL/SQL source code into a form that cannot be deciphered by humans.

121

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

When you create any object, such as table, procedure, function,
and so on, the entries are made to the USER_OBJECTS table.
When the code in the slide is executed successfully, you can
view the names of functions/procedures

in the USER_OBJECTS

table by issuing the following command:

SELECT object_name
FROM USER_OBJECTS
WHERE object_type IN ('FUNCTION’,‘PROCEDURE’) ;

Viewing Object Names in the USER_OBJECTS Table

122

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

The source of the functions/procedures owned by your user
name is stored in the USER_SOURCE table. You can check the
source for any function/procedure by issuing the following
command:

SELECT text
FROM USER_SOURCE
WHERE type = 'FUNCTION’ and name = ‘TAX_FUNC’
ORDER BY line;

Viewing Source Code in the USER_SOURCE Table

Copyright © 2009, Oracle. All rights reserved.

Review of Object Privileges

124

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

An object privilege allows the use of a specific database object,
such as a table, a view or a PL/SQL procedure, by one or more
database users.

When a database object is first created, only its owner (creator)
and the Database Administrator are privileged to use it.

Privileges for all other users must be specifically granted (and
 can be

later revoked). This can be done by the object owner or

by the DBA.

What Is an Object Privilege?

125

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

Each object has a particular set of grantable privileges. The following table
lists the privileges for various objects.

SELECT, INSERT, UPDATE,

and DELETE privileges allow the holder (the
grantee) of the privilege to use the corresponding SQL statement

on the
object.

For example, INSERT privilege on the EMPLOYEES table allows the
holder to INSERT rows into the table, but not to UPDATE or DELETE rows.

Object Privilege Table View Sequence Procedure
ALTER X X
DELETE X X
EXECUTE X
INDEX X
INSERT X X
REFERENCES X X
SELECT X X X
UPDATE X X

What Object Privileges Are Available?

Presenter
Presentation Notes
Tell Me / Show Me

Review the list of privileges shown here.

126

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

ALTER privilege allows the grantee to ALTER the table, while INDEX
privilege allows the grantee to create indexes on the table. Of course, you
can automatically do this on your own tables!

REFERENCES privilege allows the grantee to check for the existence of
rows in a table using foreign key constraints.

Object Privilege Table View Sequence Procedure
ALTER X X
DELETE X X
EXECUTE X
INDEX X
INSERT X X
REFERENCES X X
SELECT X X X
UPDATE X X

What Object Privileges Are Available? (continued)

Presenter
Presentation Notes
Instructor Note

Why do we need REFERENCES privilege? Look at EMPLOYEES and DEPARTMENTS. There is a foreign key constraint which requires that every (foreign key) DEPARTMENT_ID in EMPLOYEES must also exist (as a primary key) in DEPARTMENTS. Now a user needs to INSERT a new row into EMPLOYEES. How is the constraint checked? By reading DEPARTMENTS to check that the required DEPARTMENT_ID exists. But we may not want to grant SELECT on DEPARTMENTS to the user, because this would allow him/her to SELECT all data from the table. So we grant REFERENCES on DEPARTMENTS instead.

127

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

Use the following syntax:

Syntax Defined
object_priv Is an object privilege to be

granted
columns Specifies a column from a table

or view on which privileges are
granted

ON object Is the object on which the
privileges are granted

user|role Identifies the user or role to
whom the privilege is granted

PUBLIC Grants object privileges to all
users

WITH GRANT
OPTION

Allows the grantee to grant the
object privileges to other users
and roles

GRANT object_priv [(columns)]
ON object
TO {user|role|PUBLIC}
[WITH GRANT OPTION];

GRANT INSERT, UPDATE ON employees TO TOM, SUSAN;

GRANT SELECT ON departments TO PUBLIC;

Examples:

Granting Object Privileges

Presenter
Presentation Notes
Remind students that:

We can GRANT (or REVOKE) several privileges to/from several users in a single command by using comma-separated lists, as shown in the first example

Any privilege granted to PUBLIC is automatically granted to all users

WITH GRANT OPTION allows the grantee to grant (pass on) the privilege to other users.

128

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

Use the following syntax:

Examples:

REVOKE object_priv [(columns)]
ON object
FROM {user|role|PUBLIC};

REVOKE INSERT, UPDATE ON employees FROM TOM, SUSAN;

REVOKE SELECT ON departments FROM PUBLIC;

Revoking Object Privileges

129

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

To invoke and execute a PL/SQL subprogram, the user must be
granted EXECUTE privilege on the subprogram.

Example:

CREATE OR REPLACE PROCEDURE add_dept ... ;
CREATE OR REPLACE FUNCTION get_sal ...;

GRANT EXECUTE ON add_dept TO TOM, SUSAN;
GRANT EXECUTE ON get_sal TO PUBLIC;
...
REVOKE EXECUTE ON get_sal FROM PUBLIC;

Using the EXECUTE privilege With Stored Subprograms

130

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

To invoke a subprogram, a user needs only EXECUTE privilege on the
subprogram. He/she does NOT need any privileges on the objects
referenced by SQL statements within the subprogram.

The user (SUSAN) does not need INSERT (or any other privilege) on
the DEPARTMENTS table.

CREATE OR REPLACE PROCEDURE add_dept ...
IS BEGIN
...
INSERT INTO DEPARTMENTS ... ;

...
END;

GRANT EXECUTE ON add_dept TO SUSAN;

What About the Objects Referenced Inside the
Subprogram?

Presenter
Presentation Notes
Point out that this means we must be extra-careful about granting EXECUTE privilege on subprograms which access confidential data !

131

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

The subprogram owner (creator) must hold the appropriate privileges
on the objects referenced by the subprogram. The owner’s privileges
are checked when the subprogram is created or replaced, and also

every time the subprogram is invoked.

In this example, Tom

creates a procedure that

SUSAN

needs to use:

(Table owner): GRANT INSERT ON departments TO TOM;
(Tom): CREATE OR REPLACE PROCEDURE add_dept ...

IS BEGIN
...
INSERT INTO DEPARTMENTS ... ;
...

END;
(Tom): GRANT EXECUTE ON add_dept TO SUSAN;

So Who Needs Privileges on the Referenced Objects?

Presenter
Presentation Notes
Instructor Notes

Requiring the procedure owner to have the required object privileges is called Definer’s Rights. In the next lesson, students will learn how to change this by using Invoker’s Rights.

Definer’s Rights is the reason why DBAs are often unwilling to allow application developers to create subprograms in production databases, because (since the privileges are checked every time the subprogram is invoked) the developer would need to hold the object privileges for the lifetime of the subprogram.

Copyright © 2009, Oracle. All rights reserved.

Using Invoker’s Rights

133

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

When a subprogram is called you might want the code to run with the
invoker’s set of privileges.

Definer’s rights:
•

Programs execute with the
privileges of the owner.

•

User does not require
privileges on underlying
objects that the
subprogram accesses.
User only requires
privilege to EXECUTE a
subprogram.

•

DEFINER=OWNER

Invoker’s rights:
•

Programs execute with the
privileges of the calling
user.

•

User requires privileges
on the underlying objects
that the subprogram
accesses.

•

INVOKER=USER

Definer’s Rights Compared to Invoker’s Rights

134

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

By setting AUTHID to CURRENT_USER, anyone calling this
function requires privileges on the referenced database objects.

 In this case, SELECT on

the tests table.

CREATE OR REPLACE PROCEDURE grades
(p_score OUT NUMBER, p_name IN VARCHAR2)
AUTHID CURRENT_USER

IS
BEGIN
SELECT score INTO p_score
FROM tests
WHERE key=p_name;

END;

Example

135

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

Another Example

If Definer’s Rights (the default) are used, Tom needs INSERT privilege
on DEPARTMENTS. If Invoker’s Rights (with AUTHID CURRENT_USER)
are used, SUSAN needs INSERT privilege on DEPARTMENTS.

In both cases, SUSAN needs EXECUTE privilege on ADD_DEPT.

Tom> CREATE OR REPLACE PROCEDURE add_dept ...
[AUTHID CURRENT_USER] IS
BEGIN
INSERT INTO departments ...;

END;
Tom> GRANT EXECUTE ON add_dept TO susan;

Susan> BEGIN tom.add_dept(...); END;

Presenter
Presentation Notes
Answer: with Definer’s rights, Tom will need INSERT privilege. With Invoker’s rights, Susan will need INSERT privilege. In both cases, Susan will need EXECUTE privilege on the procedure.

136

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

In Which Schema Are Referenced Objects?

Using Definer’s Rights, objects are assumed to be in the definer’s
schema:

When using Definer’s Rights, table-name TESTS is resolved in the
definer’s schema. This means that table TESTS is assumed to be in
Tom’s schema, so you

do not need to prefix the table-name with the
schema-name. This procedure compiles

and executes

successfully
provided the relevant privileges have been granted.

Tom> CREATE TABLE tests ... ;
Tom> CREATE OR REPLACE PROCEDURE grades ... IS

BEGIN
... SELECT ... FROM tests ... ;
END;

Susan> BEGIN ... tom.grades(...); END;

137

Semester 1 Final Review

Copyright © 2009, Oracle. All rights reserved.

In Which schema Are Referenced Objects? (continued)
When using Invoker’s Rights, referenced objects are assumed to
be in the invoker’s schema:

Using Invoker’s rights, object-names are resolved in the Invoker’s
schema. This means that TESTS is now assumed to be in
Susan’s schema. If TESTS is in Tom’s schema, Line A must be
changed to:

Tom> CREATE TABLE tests ... ;
Tom> CREATE OR REPLACE PROCEDURE grades ...

AUTHID CURRENT_USER IS
BEGIN
... SELECT ... FROM tests ... ; -- Line A
END;

Susan> BEGIN ... tom.grades(...); END;

... SELECT ... FROM tom.tests ... ; -- Line A

Presenter
Presentation Notes
Answer: either change SELECT … FROM tests …; to SELECT … FROM tom.tests …; Or, create a synonym: CREATE SYNONYM tests FOR tom.tests;

	Semester 1 Final Review
	Semester 1 Final Review
	Handling Exceptions
	What Is an Exception?�
	What Is an Exception Handler? (continued)�
	Exceptions in PL/SQL �
	Handling Exceptions With PL/SQL�
	Handling Exceptions With PL/SQL (continued)�
	Handling Exceptions With PL/SQL (continued)
	Handling Exceptions With PL/SQL
	Trapping Exceptions�
	Trapping Exceptions (continued)�
	Guidelines for Trapping Exceptions�
	Trapping Oracle Server Exceptions
	Three Exception Types�
	Handling Exceptions with PL/SQL�
	Two Types of Oracle Server Error
	Trapping Predefined Oracle Server Errors�
	Trapping Predefined Oracle Server Errors (continued)�
	Trapping Several Predefined Oracle Server Errors (continued)�
	Trapping Non-Predefined Oracle Server Errors
	Trapping Non-Predefined Oracle Server Errors (continued)��
	Non-Predefined Error
	Non-Predefined Error (continued)�
	Functions for Trapping Exceptions�
	Functions for Trapping Exceptions
	Trapping User-Defined Exceptions
	Trapping User-Defined Exceptions
	Trapping User-Defined Exceptions (continued)�
	Trapping User-Defined Exceptions (continued)�
	Trapping User-Defined Exceptions (continued)�
	The RAISE Statement
	The RAISE_APPLICATION_ERROR Procedure
	The RAISE_APPLICATION_ERROR Procedure (continued)�
	Recognizing the Scope of Variables and Exceptions
	Nested Blocks�
	Variable Scope�
	Variable Visibility
	Qualifying an Identifier �
	Handling Exceptions
	Trapping Exceptions With a Handler�
	Trapping Exceptions With a Handler (continued)�
	Calling Environments
	Propagating Exceptions in a Subblock
	Propagating Exceptions in a Subblock�
	Creating Procedures
	Differences Between Anonymous Blocks and Subprograms��
	Syntax Differences:�
	Differences Between Anonymous Blocks and Subprograms�
	Benefits of Subprograms
	Benefits of Subprograms (continued)�
	What Is a Procedure?�
	Syntax�
	Syntax (continued)�
	Example�
	Invoking Procedures
	Correcting Errors in Create Procedure Statements�
	Saving Your Work�
	Saving Your Work (continued)�
	Saving Your Work (continued)�
	Alternative Tools for Developing Procedures
	Using Parameters in Procedures
	What Are Parameters?�
	What Are Parameters? (continued)�
	What Are Parameters? (continued)�
	What Are Arguments?�
	Creating Procedures With Parameters
	Invoking Procedures With Parameters�
	Invoking Procedures With Parameters (continued)�
	Types of Parameters
	Formal Parameters
	Actual Parameters
	Formal and Actual Parameters�
	Passing Parameters
	Procedural Parameter Modes�
	The IN mode Is the Default if No Mode Is Specified�
	Using OUT Parameters: Example
	Viewing OUT Parameters in Application Express
	Using IN OUT Parameters: �
	Using the previous IN OUT example
	Summary of Parameter Modes�
	Syntax for Passing Parameters�
	Parameter Passing: Examples�
	Using the DEFAULT Option for IN Parameters
	Using the DEFAULT Option for Parameters
	Guidelines for Using the DEFAULT Option for Parameters
	Creating Functions
	What Is a Stored Function?�
	What Is a Stored Function? (continued)�
	Syntax for Creating Functions�
	Syntax for Creating Functions (continued)��
	Stored Function With a Parameter
	Returns Can Be in Both BEGIN and/or From EXCEPTION Sections�
	Ways to Invoke (or Execute) Functions With Parameters�
	Ways to Call Functions With Parameters
	Invoking Functions Without Parameters �
	Benefits and Restrictions That Apply to Functions�
	Differences Between Procedures and Functions�
	Differences/Similarities Between Procedures and Functions
	Differences Between Procedures and Functions
	Using Functions in SQL Statements
	Advantages of Functions in SQL Statements
	Functions in SQL Expressions:�
	Locations to Call User-Defined Functions
	Restrictions on Calling Functions from SQL Expressions
	Controlling Side Effects When Calling Functions From SQL Expressions�
	Restrictions on Calling Functions From SQL:�
	Restrictions on Calling Functions From SQL: Example
	Review of the Data Dictionary
	How Can You Read the Dictionary?�
	Viewing Information in the Dictionary��
	Using the Super-View Dictionary��
	Using the Super-View Dictionary ��
	Managing Procedures and Functions
	Handled Exceptions
	Handled Exceptions: Example
	Exceptions Not Handled�
	Exceptions Not Handled: Example�
	Removing Procedures and Functions�
	Viewing Procedures/Functions in the Data Dictionary�
	Viewing Object Names in the USER_OBJECTS Table
	Viewing Source Code in the USER_SOURCE Table
	Review of Object Privileges
	What Is an Object Privilege?�
	What Object Privileges Are Available?�
	What Object Privileges Are Available? (continued)�
	Granting Object Privileges�
	Revoking Object Privileges
	Using the EXECUTE privilege With Stored Subprograms�
	What About the Objects Referenced Inside the Subprogram?�
	So Who Needs Privileges on the Referenced Objects?
	Using Invoker’s Rights
	Definer’s Rights Compared to Invoker’s Rights�
	Example�
	Another Example
	In Which Schema Are Referenced Objects?��
	In Which schema Are Referenced Objects? (continued)

