
Copyright © 2009, Oracle. All rights reserved.

Manipulating Data in PL/SQL

2

Manipulating Data in PL/SQL

Copyright © 2009, Oracle. All rights reserved.

What Will I Learn?
In this lesson, you will learn to:
• Construct and execute PL/SQL statements

that manipulate data with DML statements
• Describe when to use implicit or explicit

cursors in PL/SQL
• Create PL/SQL code to use SQL implicit

cursor attributes to evaluate cursor activity

3

Manipulating Data in PL/SQL

Copyright © 2009, Oracle. All rights reserved.

Why Learn It?
In the previous lesson, you learned that you can
include SELECT statements that return a single
row in a PL/SQL block. The data retrieved by the
SELECT statement must be held in variables
using the INTO clause.

In this lesson, you learn how to include data
manipulation language (DML) statements, such
as INSERT, UPDATE, DELETE, and MERGE in
PL/SQL blocks.

4

Manipulating Data in PL/SQL

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Manipulating Data Using PL/SQL
Make changes to data by using DML commands within your
PLSQL block:
• INSERT
• UPDATE
• DELETE
• MERGE

INSERT

UPDATE

DELETE

MERGE

5

Manipulating Data in PL/SQL

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Manipulating Data Using PL/SQL (continued)
• You manipulate data in the database by using the DML

commands.
• You can issue the DML commands—INSERT, UPDATE, DELETE,

and MERGE—without restriction in PL/SQL. Row locks (and table
locks) are released by including COMMIT or ROLLBACK statements
in the PL/SQL code.
– The INSERT statement adds new rows to the table.
– The UPDATE statement modifies existing rows in the table.
– The DELETE statement removes rows from the table.
– The MERGE statement selects rows from one table to update and/or

insert into another table. The decision whether to update or insert into
the target table is based on a condition in the ON clause.

• Note: MERGE is a deterministic statement—that is, you cannot
update the same row of the target table multiple times in the same
MERGE statement. You must have INSERT and UPDATE object
privileges in the target table and the SELECT privilege in the source
table.

Presenter
Presentation Notes
In PL/SQL statements row and table locks operate exactly the same way they do within SQL statements. By issuing a COMMIT or ROLLBACK statement PL/SQL will release those locks. To practice DML statements make a copy of the database table first.

6

Manipulating Data in PL/SQL

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Inserting Data
The INSERT statement adds new row(s) to a table.

Example: Add new employee information to the COPY_EMP table.

BEGIN
INSERT INTO copy_emp

(employee_id, first_name, last_name, email,
hire_date, job_id, salary)

VALUES (99, 'Ruth', 'Cores',
'RCORES', SYSDATE, 'AD_ASST', 4000);

END;

One new row is added to the COPY_EMP table.

Presenter
Presentation Notes
Here is an INSERT statement embedded within a PL/SQL block of code. Notice it is no different than a regular INSERT statement in SQL. The only real difference are the keywords BEGIN and END. While using the INSERT command in a PL/SQL block, you may use SQL functions, such as USER and SYSDATE. You may generate primary key values by using existing database sequences, and you may derive values in the PL/SQL block as part of your INSERT statement.

7

Manipulating Data in PL/SQL

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Updating Data
The UPDATE statement modifies existing row(s) in a table.

Example: Increase the salary of all employees who are stock
clerks.

DECLARE
v_sal_increase employees.salary%TYPE := 800;

BEGIN
UPDATE copy_emp
SET salary = salary + v_sal_increase
WHERE job_id = 'ST_CLERK';

END;

Presenter
Presentation Notes
This example shows the use of the UPDATE statement to modify existing rows in a table. In this case, the DECLARE segment of the block defines the v_sal_increase variable. The BEGIN statement contains the actual UPDATE statement. In the SET clause you can see the importance of properly naming your variables because the right hand side of the equal sign can use database column names, literal values, or PL/SQL variables in order to set the salary in this case. Remember, the WHERE clause is used to determine which rows are affected. Without the WHERE clause, all rows would be updated.

8

Manipulating Data in PL/SQL

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Deleting Data
The DELETE statement removes row(s) from a table.

Example: Delete rows that belong to department 10 from the
COPY_EMP table.

DECLARE
v_deptno employees.department_id%TYPE := 10;

BEGIN
DELETE FROM copy_emp
WHERE department_id = v_deptno;

END;

Presenter
Presentation Notes
The DELETE statement is used to remove rows from a database table. If the WHERE clause is not used, then all rows in the table will be removed provided no other integrity constraints are violated.

9

Manipulating Data in PL/SQL

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Merging Rows
The MERGE statement selects rows from one table to update
and/or insert into another table. Insert or update rows in the
copy_emp table to match the employees table.

BEGIN
MERGE INTO copy_emp c

USING employees e
ON (e.employee_id = c.employee_id)

WHEN MATCHED THEN
UPDATE SET

c.first_name = e.first_name,
c.last_name = e.last_name,
c.email = e.email,
. . .

WHEN NOT MATCHED THEN
INSERT VALUES(e.employee_id, e.first_name, …e.department_id);

END;

Presenter
Presentation Notes
The MERGE statement selects rows from one table to update and/or add into another table. In this case, the EMPLOYEES table is the table being compared to the copy_emp table. When the data is different, new data will be placed into the copy_emp table to match what exists in the EMPLOYEES table. Data in the copy_emp table may also be changed or updated when the data in the two tables does not match.

10

Manipulating Data in PL/SQL

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Getting Information From a Cursor

Look again at the DELETE statement in this PL/SQL block.

It would be useful to know how many COPY_EMP rows were
deleted by this statement.

To obtain this information, we need to understand cursors.

DECLARE
v_deptno employees.department_id%TYPE := 10;

BEGIN
DELETE FROM copy_emp
WHERE department_id = v_deptno;

END;

11

Manipulating Data in PL/SQL

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
What is a Cursor?

Every time an SQL statement is about to be executed, the Oracle
server allocates a private memory area to store the SQL
statement and the data that it uses. This memory area is called
an implicit cursor.

Because this memory area is automatically managed by the
Oracle server, you have no direct control over it. However, you
can use predefined PL/SQL variables, called implicit cursor
attributes, to find out how many rows were processed by the SQL
statement.

Presenter
Presentation Notes
Cursors occur whenever a SQL or PL/SQL statement is issued. Since Oracle creates a cursor in the background, you have no control over these cursors. However, they have attributes and with PL/SQL you can see the attributes of these cursors. The word cursor has several meanings in Oracle. It is sometimes used to mean a pointer to the private memory area rather than the memory area itself. It is also used to refer to an area of shared memory. In this course, however, we focus only on it’s meaning in a PL/SQL environment – which is a private memory area to store the SQL statement and the data that is uses.

12

Manipulating Data in PL/SQL

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Implicit and Explicit Cursors

There are two types of cursors:

• Implicit cursors: Defined automatically by Oracle for all SQL
data manipulation statements, and for queries that return
only one row. An implicit cursor is always automatically
named “SQL.”

• Explicit cursors: Defined by the PL/SQL programmer for
queries that return more than one row. (Covered in a later
lesson.)

Presenter
Presentation Notes
The two types of cursors are implicit and explicit. Implicit cursors are defined by Oracle and named “SQL”. Oracle uses an implicit cursor for each UPDATE, DELETE, or INSERT statement that you execute in your program. Although you have no direct access to them, you can examine some of their attributes. Explicit cursors are defined by a PL/SQL programmer for queries that return more than one row. As a programmer, you many want to retrieve multiple rows from a database table, have a pointer to each row that is retrieved, and, work on the rows one at a time. Explicit cursors are declared in the declarative section of a PL/SQL block.

13

Manipulating Data in PL/SQL

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Cursor Attributes for Implicit Cursors
Cursor attributes are automatically declared variables that allow you to
evaluate what happened when a cursor was last used. Attributes for
implicit cursors are prefaced with “SQL.” Use these attributes in PL/SQL
statements, but not in SQL statements. Using cursor attributes, you can
test the outcome of your SQL statements.

SQL%FOUND Boolean attribute that evaluates to TRUE if the

most recent SQL statement returned at least one
row

SQL%NOTFOUND Boolean attribute that evaluates to TRUE if

the most recent SQL statement did not
return even one row

SQL%ROWCOUNT An integer value that represents the number of
rows affected by the most recent SQL statement

Presenter
Presentation Notes
The three cursor attributes that we have access to in the PL/SQL environment are: SQL%FOUND, SQL%NOTFOUND, and SQL%ROWCOUNT. SQL%FOUND is a Boolean attribute that evaluates to TRUE if the most recent SQL statement returned at least one row. SQL%NOTFOUND is a Boolean attribute that evaluates to TRUE if the most recent SQL statement did not return even one row. SQL%ROWCOUNT is an integer value that represents the number of rows affected by the most recent SQL statement. You can test the attributes SQL%ROWCOUNT, SQL%FOUND, and SQL%NOTFOUND in the executable section of a block to gather information after the appropriate command has been executed. PL/SQL does not return an error if the DML statement does not affect any rows in the underlying table. However, if a SELECT statement does not retrieve any rows, PL/SQL does return an exception. The SQL%NOTFOUND attribute is the opposite of the SQL%FOUND. This attribute may be used as the exit condition in a loop. It is useful in UPDATE and DELETE statements when no rows are changed because exceptions are not returned in these cases.

14

Manipulating Data in PL/SQL

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Using Implicit Cursor Attributes: Example 1

Delete rows that have the specified employee ID from the
copy_emp table. Print the number of rows deleted.

DECLARE
v_deptno copy_emp.department_id%TYPE := 50;

BEGIN
DELETE FROM copy_emp
WHERE department_id = v_deptno;

DBMS_OUTPUT.PUT_LINE(SQL%ROWCOUNT ||
' rows deleted.');

END;

15

Manipulating Data in PL/SQL

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Using Implicit Cursor Attributes: Example 2

Update several rows in the COPY_EMP table. Print the number of
rows updated.

DECLARE
v_sal_increase employees.salary%TYPE := 800;

BEGIN
UPDATE copy_emp
SET salary = salary + v_sal_increase
WHERE job_id = 'ST_CLERK';

DBMS_OUTPUT.PUT_LINE(SQL%ROWCOUNT ||
' rows updated.');

END;

16

Manipulating Data in PL/SQL

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Using Implicit Cursor Attributes: Good Practice Guideline

Look at this code, which creates a table and then executes a
PL/SQL block. What value is inserted into RESULTS?

CREATE TABLE results (num_rows NUMBER(4));

BEGIN
UPDATE copy_emp
SET salary = salary + 100
WHERE job_id = 'ST_CLERK';

INSERT INTO results (num_rows)
VALUES (SQL%ROWCOUNT);

END;

Presenter
Presentation Notes
Be careful, when using SQL%ROWCOUNT to ensure that you’re counting the correct values. In this example, SQL%ROWCOUNT actually returns a value of zero even though several rows in the database were changed. In this example, the INSERT statement is separate from the UPDATE statement. Therefore when the flow of execution reaches the INSERT statement the SQL%ROWCOUNT attribute is set to zero. The number of rows changed in the UPDATE statement, are lost. A better way to capture the row count from the UPDATE statement is to declare a variable to hold the value of SQL%ROWCOUNT. Since its variable is persistent within this block of code, we can now insert the value stored in the variable into the results table. It is good practice to save the value of SQL%ROWCOUNT in an explicitly declared variable before it can be automatically overwritten.

17

Manipulating Data in PL/SQL

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Terminology
Key terms used in this lesson include:

INSERT
UPDATE
DELETE
MERGE
Implicit cursors
Explicit cursors

18

Manipulating Data in PL/SQL

Copyright © 2009, Oracle. All rights reserved.

Summary
In this lesson, you learned to:
• Construct and execute PL/SQL

statements that manipulate data with
DML statements

• Describe when to use implicit or
explicit cursors in PL/SQL

• Create PL/SQL code to use SQL
implicit cursor attributes to evaluate
cursor activity

19

Manipulating Data in PL/SQL

Copyright © 2009, Oracle. All rights reserved.

Try It/Solve It
The exercises in this lesson cover the following
topics:
• Executing PL/SQL statements that

manipulate data with DML statements
• Describing when to use implicit or explicit

cursors in PL/SQL
• Using SQL implicit cursor attributes in

PL/SQL

	Manipulating Data in PL/SQL
	What Will I Learn?
	Why Learn It?
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Summary
	Try It/Solve It

