
Copyright © 2008, Oracle. All rights reserved.

User-Defined Records

2

User-Defined Records

Copyright © 2008, Oracle. All rights reserved.

What Will I Learn?
In this lesson, you will learn to:

• Create and manipulate user-defined
PL/SQL records

3

User-Defined Records

Copyright © 2008, Oracle. All rights reserved.

Why Learn It?
You already know how to declare and use
PL/SQL record structures that correspond
to the data fetched by a cursor, using the
%ROWTYPE attribute.

What if you want to create and use a
record structure that corresponds to a row
in a table, or a view, or a join of several
tables, rather than to a cursor? Or which
does not correspond to any object(s) in the
database?

In this lesson you will learn how to create
and use your own record structures.

4

User-Defined Records

Copyright © 2008, Oracle. All rights reserved.

Tell Me/Show Me
A Problem Scenario

The EMPLOYEES table contains eleven columns: EMPLOYEE_ID,
FIRST_NAME,...., MANAGER_ID, DEPARTMENT_ID.

You need to code a single-row SELECT * FROM EMPLOYEES in
your PL/SQL subprogram. Because you are selecting only a
single row, you do not need to declare and use a cursor.

How many scalar variables must you DECLARE to hold the
column values ?

The next slide shows the code.

5

User-Defined Records

Copyright © 2008, Oracle. All rights reserved.

Tell Me/Show Me
A Problem Scenario: PL/SQL Code

CREATE OR REPLACE PROCEDURE query_one_emp
(p_emp_id IN employees.employee_id%TYPE) IS

v_employee_id employees.employee_id%TYPE;
v_first_name employees.first_name%TYPE;
... -- seven more scalar variables here
v_manager_id employees.manager_id%TYPE;
v_department_id employees.department_id%TYPE;

BEGIN
SELECT employee_id, first_name, ..., department_id
INTO v_employee_id, v_first_name, ..., v_department_id
FROM employees
WHERE employee_id = p_emp_id;

EXCEPTION
WHEN NO_DATA_FOUND THEN ...;

END;

6

User-Defined Records

Copyright © 2008, Oracle. All rights reserved.

Tell Me/Show Me
How Can You Return the Results to the Calling
Environment?

Fortunately you don’t have to do all this. Instead, you declare and
use a PL/SQL record. The next slide shows how.

CREATE OR REPLACE PROCEDURE query_one_emp
(p_emp_id IN employees.employee_id%TYPE,
p_first_name OUT employees.first_name%TYPE,
... – seven more OUT parameters here
p_manager_id OUT employees.manager_id%TYPE,
p_department_id OUT employees.department_id%TYPE)

IS
v_employee_id employees.employee_id%TYPE;
v_first_name employees.first_name%TYPE;
...

7

User-Defined Records

Copyright © 2008, Oracle. All rights reserved.

Tell Me/Show Me
Using a PL/SQL Record

You can use %ROWTYPE with tables just as you can with cursors.
And if a column is added to or dropped from the table, no change
to the procedure is needed.

CREATE OR REPLACE PROCEDURE query_one_emp
(p_emp_id IN employees.employee_id%TYPE,
p_emp_record OUT employees%ROWTYPE) IS

BEGIN
SELECT * INTO p_emp_record
FROM employees
WHERE employee_id = p_emp_id;

EXCEPTION
WHEN NO_DATA_FOUND THEN DBMS_OUTPUT.PUT_LINE('Nothing

selected.');
END;

8

User-Defined Records

Copyright © 2008, Oracle. All rights reserved.

Tell Me/Show Me
PL/SQL Records

A PL/SQL record is a composite data type consisting of a group
of related data items stored as fields, each with its own name and
data type. You can refer to the whole record by its name and/or
to individual fields by their names.

Using %ROWTYPE implicitly declares a record whose fields match
the corresponding columns by name and data type. You can
reference individual fields by prefixing the field-name with the
record-name:

... IF p_emp_record.salary > 25000 THEN
RAISE_APPLICATION_ERROR
(-20104, 'This employee earns too much!');

END IF; ...

9

User-Defined Records

Copyright © 2008, Oracle. All rights reserved.

Tell Me/Show Me
Defining Your Own Records

But what if your example procedure SELECTs from a join of
several tables?

You can declare your own record structures containing any fields
you like. PL/SQL records:

• Must contain one or more components (fields) of any scalar or
composite type

• Are not the same as rows in a database table
• Can be assigned initial values and can be defined as NOT

NULL
• A record can be a component of another record (nested

records).

10

User-Defined Records

Copyright © 2008, Oracle. All rights reserved.

Tell Me/Show Me
Creating a User-Defined PL/SQL Record

A record structure is a composite data type, just as DATE,
VARCHAR2, NUMBER, and so on are Oracle-defined scalar data
types. You declare the type and then declare one or more
variables of that type.

field_declaration can be of any PL/SQL data type, including
%TYPE, %ROWTYPE, and RECORD.

TYPE type_name IS RECORD
(field_declaration[,field_declaration]...);

identifier type_name;

11

User-Defined Records

Copyright © 2008, Oracle. All rights reserved.

Tell Me/Show Me
User-Defined PL/SQL Records Example

TYPE person_type IS RECORD
(first_name employees.first_name%TYPE,
last_name employees.last_name%TYPE,
gender VARCHAR2(6));

TYPE employee_type IS RECORD
(job_id VARCHAR2(10),
salary number(8,2),
person_data person_type);

person_rec person_type;
employee_rec employee_type;
...
IF person_rec.last_name ... END IF;
employee_rec.person_data.last_name := ...;

12

User-Defined Records

Copyright © 2008, Oracle. All rights reserved.

Tell Me/Show Me
User-Defined PL/SQL Records Example (continued)

Types can contain other types (person_data is a field in
employee_type)
When types contain other types, you must use multiple levels of
dot-prefixing to reference individual scalar fields
(employee_rec.person_data.last_name).

TYPE person_type IS RECORD ...;
TYPE employee_type IS RECORD (...

person_data person_type);
person_rec person_type;
employee_rec employee_type;
...
IF person_rec.last_name ... END IF;
employee_rec.person_data.last_name := ...;

13

User-Defined Records

Copyright © 2008, Oracle. All rights reserved.

Tell Me/Show Me
Where Can Types and Records Be Declared and Used?

They are composite variables and can be declared anywhere that
scalar variables can be declared: in anonymous blocks,
procedures, functions, package specifications (global), package
bodies (local), triggers, and so on.

Their scope and visibility follows the same rules as for scalar
variables. For example, you can declare a type in a package
specification. Records based on that type can be declared and
used anywhere within the package, and also in the calling
environment.

The next two slides show an example of this.

14

User-Defined Records

Copyright © 2008, Oracle. All rights reserved.

Tell Me/Show Me
CREATE OR REPLACE PACKAGE pers_pack IS
TYPE person_type IS RECORD

(first_name employees.first_name%TYPE,
last_name employees.last_name%TYPE,
gender VARCHAR2(6));

PROCEDURE pers_proc (p_pers_rec OUT person_type);
END pers_pack;
CREATE OR REPLACE PACKAGE BODY pers_pack IS
PROCEDURE pers_proc (p_pers_rec OUT person_type) IS

v_pers_rec person_type;
BEGIN
SELECT first_name, last_name, 'Female' INTO

v_pers_rec
FROM employees WHERE employee_id = 100;

p_pers_rec := v_pers_rec;
END pers_proc;

END pers_pack;

15

User-Defined Records

Copyright © 2008, Oracle. All rights reserved.

Tell Me/Show Me
Visibility and Scope of Records Example (continued)

Now invoke the package procedure from another PL/SQL block
(it could be a Java, C, or other language application):

DECLARE
a_pers_rec pers_pack.person_type; -- 1

BEGIN
pers_pack.pers_proc(a_pers_rec); -- 2
DBMS_OUTPUT.PUT_LINE

(a_pers_rec.first_name ||' '||a_pers_rec.gender);
END;

16

User-Defined Records

Copyright © 2008, Oracle. All rights reserved.

Tell Me/Show Me
Terminology
Key terms used in this lesson include:

PL/SQL record

17

User-Defined Records

Copyright © 2008, Oracle. All rights reserved.

Summary
In this lesson, you learned to:

• Create and manipulate user-defined
PL/SQL records

18

User-Defined Records

Copyright © 2008, Oracle. All rights reserved.

Try It/Solve It
This practice covers the following
topics:

• Creating and manipulating user-
defined PL/SQL records.

	User-Defined Records
	What Will I Learn?
	Why Learn It?
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Summary
	Try It/Solve It

