
Copyright © 2009, Oracle.  All rights reserved.

Recognizing the Scope of Variables



2

Recognizing the Scope of Variables

Copyright © 2009, Oracle.  All rights reserved.

What Will I Learn?
In this lesson, you will learn to: 
• Describe the rules for variable scope when a 

variable is nested in a block 
• Recognize a variable-scope issue when a 

variable is used in nested blocks
• Qualify a variable nested in a block with a 

label
• Describe the scope of an exception
• Recognize an exception-scope issue when 

an exception is within nested blocks
• Describe the effect of exception propagation 

in nested blocks



3

Recognizing the Scope of Variables

Copyright © 2009, Oracle.  All rights reserved.

Why Learn It?
You learned some information about nested 
blocks, scope of variables, and exception 
propagation in an earlier lesson. Now that you 
understand exception handling properly, in 
this lesson you first review what you know 
already, and then learn more.

A named exception is a kind of PL/SQL 
variable. To handle exceptions correctly, you 
must understand the scope and visibility of 
exception variables. This is particularly 
important when using nested blocks.



4

Recognizing the Scope of Variables

Copyright © 2009, Oracle.  All rights reserved.

Tell Me / Show Me
Review of Nested Blocks
Nested blocks are blocks of code inside blocks of 
code. There is an outer block and an inner block. 
You can nest blocks within blocks as many times 
as you need to, there is no practical limit to the 
depth of nesting Oracle allows. 

Presenter
Presentation Notes
When working with exceptions, we sometimes find it necessary to build exception handling within nested blocks of code. Let’s take a moment to review nesting and what that means. First of all, nested blocks are blocks of code inside other blocks of code. The outer block encompasses the inner block. PL/SQL allows you to nest or embed blocks within another PL/SQL block. A PL/SQL block nested within another PL/SQL block may be called a nested block, an enclosed block, a child block, or a sub-block. All of these names are synonymous. A PL/SQL block that calls another PL/SQL block, anonymous or named, may be referred to as either the enclosing block, the parent block, or the calling block.





5

Recognizing the Scope of Variables

Copyright © 2009, Oracle.  All rights reserved.

Tell Me / Show Me
Review of Nested Blocks
The example shown in the slide has an outer (parent) block 
(illustrated in blue) and a nested (child) block (illustrated in red). 
The variable v_outer_variable is declared in the outer block 
and the variable v_inner_variable is declared in the inner 
block. 

DECLARE
v_outer_variable VARCHAR2(20):='GLOBAL VARIABLE';

BEGIN
DECLARE

v_inner_variable VARCHAR2(20):='LOCAL VARIABLE';
BEGIN

DBMS_OUTPUT.PUT_LINE(v_inner_variable);
DBMS_OUTPUT.PUT_LINE(v_outer_variable);

END;
DBMS_OUTPUT.PUT_LINE(v_outer_variable); 

END;



6

Recognizing the Scope of Variables

Copyright © 2009, Oracle.  All rights reserved.

Tell Me / Show Me
Review of Variable Scope
The scope of a variable is the block or blocks in which the 
variable is accessible, that is, it can be named and used. In 
PL/SQL, a variable’s scope is the block in which it is declared 
plus all blocks nested within the declaring block.
What are the scopes of the two variables declared in this 
example?

DECLARE
v_outer_variable VARCHAR2(20):='GLOBAL VARIABLE';

BEGIN
DECLARE

v_inner_variable VARCHAR2(20):='LOCAL VARIABLE';
BEGIN

DBMS_OUTPUT.PUT_LINE(v_inner_variable);
DBMS_OUTPUT.PUT_LINE(v_outer_variable);

END;
DBMS_OUTPUT.PUT_LINE(v_outer_variable); 

END;

Presenter
Presentation Notes
The scope of a variable is the block or blocks in which the variable is accessible. In PL/SQL, a variable’s scope is the block in which it is declared plus all blocks nested within that enclosing block. The general advantage of a nested block is that you create a scope for all the declared objects, and executable statements in that block. You can use this scope to improve your control over activity in your program. This also means that if an error occurs in a block, that it is just in this block execution is halted. Once the error has been handled locally, the program control continues outside of the block in which the error occurred. As a reminder, cursors are a type of variable and are subject to the same scoping rules as more obvious variables.





7

Recognizing the Scope of Variables

Copyright © 2009, Oracle.  All rights reserved.

Tell Me / Show Me
Review of Variable Scope (continued)
Examine the following code. What is the scope of each of the 
variables?

DECLARE
v_father_name VARCHAR2(20):='Patrick';
v_date_of_birth DATE:='20-Apr-1972';

BEGIN
DECLARE

v_child_name VARCHAR2(20):='Mike';
BEGIN

DBMS_OUTPUT.PUT_LINE('Father''s Name: '||v_father_name);
DBMS_OUTPUT.PUT_LINE('Date of Birth: '||v_date_of_birth);
DBMS_OUTPUT.PUT_LINE('Child''s Name: '||v_child_name);

END;
DBMS_OUTPUT.PUT_LINE('Date of Birth: '||v_date_of_birth); 

END;



8

Recognizing the Scope of Variables

Copyright © 2009, Oracle.  All rights reserved.

Tell Me / Show Me
Review of Variable Scope (continued)
Why will this code not work correctly?

BEGIN
DECLARE

CURSOR emp_curs IS SELECT * FROM employees;
v_emp_rec  emp_curs%ROWTYPE;

BEGIN
OPEN emp_curs;
LOOP

FETCH emp_curs INTO v_emp_rec;
EXIT WHEN emp_curs%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(v_emp_rec.first_name);

END LOOP;
END;
CLOSE emp_curs;

END;



9

Recognizing the Scope of Variables

Copyright © 2009, Oracle.  All rights reserved.

Tell Me / Show Me
Review of Variable Scope
Will this code work correctly?  Why or why not?

DECLARE
CURSOR emp_curs IS SELECT * FROM employees;

BEGIN
OPEN emp_curs;
DECLARE

v_emp_rec   emp_curs%ROWTYPE;
BEGIN

LOOP
FETCH emp_curs INTO v_emp_rec;
EXIT WHEN emp_curs%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(v_emp_rec.first_name);

END LOOP;
END;
CLOSE emp_curs;

END;



10

Recognizing the Scope of Variables

Copyright © 2009, Oracle.  All rights reserved.

Tell Me / Show Me
How does PL/SQL Resolve the Names of 
Variables?

When you reference the name of a variable within 
a block, PL/SQL first looks to see if a variable with 
that name has been declared within that block (a 
local variable). If it cannot find it, PL/SQL then 
looks at the enclosing block. If it cannot find it 
declared there either, PL/SQL looks at the next 
level of enclosing block (remember there can be 
three or more levels of nested blocks).  And so on.

The next slide shows three levels of nested block.

Presenter
Presentation Notes
When you reference the name of a variable within a block, PL/SQL first looks to see if a variable with that name has been declared within that block. If it cannot find it, PL/SQL then looks at the enclosing block for the name of the variable. If it cannot find it declared there, PL/SQL looks at the next level of enclosing block. It will keep on searching outward as necessary. If it never finds the declaration, it will generate an error. Therefore, the scope of a variable consists of all the blocks in which the variable is either local, the declaring block, or global, nested blocks within the declaring block.





11

Recognizing the Scope of Variables

Copyright © 2009, Oracle.  All rights reserved.

Tell Me / Show Me
Three Levels of Nested Block

What is the scope of each of these variables?

DECLARE -- outer block
v_outervar VARCHAR2(20);

BEGIN
DECLARE                -- middle-level block

v_middlevar VARCHAR2(20);
BEGIN

BEGIN               -- innermost block
v_outervar := 'Joachim';
v_middlevar := 'Chang';

END;
END;

END;



12

Recognizing the Scope of Variables

Copyright © 2009, Oracle.  All rights reserved.

Tell Me / Show Me
Review of Variable  Naming

Are the following declarations valid?

DECLARE -- outer block
v_myvar VARCHAR2(20);

BEGIN
DECLARE               -- inner block

v_myvar   VARCHAR2(15);
BEGIN

...
END;

END;



13

Recognizing the Scope of Variables

Copyright © 2009, Oracle.  All rights reserved.

Tell Me / Show Me
Review of Variable Naming (continued)
In this example, the variable v_date_of_birth is declared 
twice.

Which v_date_of_birth is referenced in the 
DBMS_OUTPUT.PUT_LINE statement?

DECLARE
v_father_name VARCHAR2(20):='Patrick';
v_date_of_birth DATE:='20-Apr-1972';

BEGIN
DECLARE

v_child_name VARCHAR2(20):='Mike';
v_date_of_birth DATE:='12-Dec-2002';
DBMS_OUTPUT.PUT_LINE('Date of Birth: '||v_date_of_birth);
...



14

Recognizing the Scope of Variables

Copyright © 2009, Oracle.  All rights reserved.

Tell Me / Show Me
Review of Variable Visibility
The visibility of a variable is the portion of the program where an 
in-scope variable can be accessed without using a qualifier. What 
is the visibility of each of the variables? 

DECLARE
v_father_name VARCHAR2(20):='Patrick';
v_date_of_birth DATE:='20-Apr-1972';

BEGIN
DECLARE

v_child_name VARCHAR2(20):='Mike';
v_date_of_birth DATE:='12-Dec-2002';

BEGIN
DBMS_OUTPUT.PUT_LINE('Father''s Name: '||v_father_name);
DBMS_OUTPUT.PUT_LINE('Date of Birth: '||v_date_of_birth);
DBMS_OUTPUT.PUT_LINE('Child''s Name: '||v_child_name);

END;
DBMS_OUTPUT.PUT_LINE('Date of Birth: '||v_date_of_birth); 

END;

1

2

Presenter
Presentation Notes
Variable visibility refers to the portion of the program where an in-scope variable can be accessed without using a qualifier. Two of the most important concepts related to a PL/SQL block are those of scope and visibility of identifiers. An identifier is the name of a PL/SQL object, which could be anything from a variable to a program name. In order to manipulate a PL/SQL identifier, you have to be able to reference that identifier in such a way that the code will compile. The scope of an identifier is the part of the program in which you can make a reference to the identifier and have that reference resolved by the compiler. An identifier is visible in a program when it can be referenced using an unqualified name. A qualifier for an identifier can be a package name, procedure, function, or loop label. You qualify the name of an identifier with dot notation, the same way you would qualify a column name with the name of its table. Almost any variable can be qualified, and it is necessary to do so when you have variables of the same name within blocks and within nested structures.





15

Recognizing the Scope of Variables

Copyright © 2009, Oracle.  All rights reserved.

Tell Me / Show Me
Review of Variable Visibility (continued)
The v_date_of_birth variable declared in the outer block has 
scope even in the inner block. This variable is visible in the outer 
block. However, it is not visible in the inner block because the inner 
block has a local variable with the same name. The 
v_father_name variable is visible in the inner and outer blocks. 
The v_child_name variable is visible only in the inner block.

What if you want to reference the outer block’s v_date_of_birth 
within the inner block?

DECLARE
v_father_name VARCHAR2(20):='Patrick';
v_date_of_birth DATE:='20-Apr-1972';

BEGIN
DECLARE

v_child_name VARCHAR2(20):='Mike';
v_date_of_birth DATE:='12-Dec-2002';

…



16

Recognizing the Scope of Variables

Copyright © 2009, Oracle.  All rights reserved.

Tell Me / Show Me
Review of Block Labels
We can label a block using the <<…>> syntax shown here. You 
can use this label to access the variables that have scope but are 
not visible. In this example, the outer block has the label, 
<<outer>>.

Labeling is not limited to the outer block; you can label any block. 

<<outer>>
DECLARE
v_father_name VARCHAR2(20):='Patrick';
v_date_of_birth DATE:='20-Apr-1972';

BEGIN
DECLARE

v_child_name VARCHAR2(20):='Mike';
v_date_of_birth DATE:='12-Dec-2002';

…

Presenter
Presentation Notes
You label blocks by enclosing the name inside of double less than and greater than symbols. You can use the label to access the variables that have scope but are not visible. Labeling is not limited to the outer block; you can label any block. Anonymous blocks, remember, do not have names that can be stored in the database. By using block labels, you give a name to your block for the duration of its execution. A block label is a PL/SQL label that is placed directly in front of the first line of the block. You can use block labels to improve the readability of your code or to qualify the names of elements declared in a block to distinguish them from similar named elements in other blocks.





17

Recognizing the Scope of Variables

Copyright © 2009, Oracle.  All rights reserved.

Tell Me / Show Me
Using Block Labels to Gain Variable Visibility
Using the outer label to qualify the v_date_of_birth 
identifier, you can now display the father’s date of birth in the 
inner block. 
<<outer>>
DECLARE
v_father_name VARCHAR2(20):='Patrick';
v_date_of_birth DATE:='20-Apr-1972';

BEGIN
DECLARE

v_child_name VARCHAR2(20):='Mike';
v_date_of_birth DATE:='12-Dec-2002';

BEGIN
DBMS_OUTPUT.PUT_LINE('Father''s Name: '||v_father_name);
DBMS_OUTPUT.PUT_LINE('Date of Birth: ' ||outer.v_date_of_birth);
DBMS_OUTPUT.PUT_LINE('Child''s Name: '||v_child_name);
DBMS_OUTPUT.PUT_LINE('Date of Birth: '||v_date_of_birth);

END;
END;

Father’s Name:  Patrick
Date of Birth:  20-APR-72
Child’s Name:  Mike
Date of Birth:  12-DEC-02

Statement processed.



18

Recognizing the Scope of Variables

Copyright © 2009, Oracle.  All rights reserved.

Tell Me / Show Me
Exception Handling in Nested Blocks
You can deal with an exception by:
• Handling it (“trapping it”) in the block in which it occurs, or
• Propagating it to the calling environment (which can be a 

higher-level block)

Exception 
raised

Is the 
exception 
trapped? 

yes

no

Handle with
exception
handler

Propagate
to calling

environment

Presenter
Presentation Notes
When an exception is generated within a nested block, the exception will be handled first in the block in which it occurs. If that is not possible it is propagated to the calling environment. If an exception is raised within the executable section of an inner block and there is no corresponding exception handler, the inner block terminates with failure and the exception is passed to the enclosing block. The outer blocks exception section may successfully handle the exception. If it does not, the exception is passed on to the next block until there are no more and then finally the unhandled exception will be passed to the calling environment. You cannot declare the same exception twice in the same block. You can declare the same exception in two different blocks. Exceptions declared in a block are considered local to that block, and global to all its sub-blocks. Because a block can reference only local or global exceptions, enclosing blocks cannot reference exceptions declared in sub-blocks.





19

Recognizing the Scope of Variables

Copyright © 2009, Oracle.  All rights reserved.

Tell Me / Show Me
Propagating Exceptions to an Outer Block
If the exception is raised in the executable section of the inner 
block and there is no corresponding exception handler, the 
PL/SQL block terminates with failure and the exception is 
propagated to an enclosing block. 

Terminate 
abruptly

Propagate 
the 

exception
Exception 

raised

Is the 
exception 
trapped? 

yes
Execute statements 
in the EXCEPTION 

section

Terminate 
gracefully

no



20

Recognizing the Scope of Variables

Copyright © 2009, Oracle.  All rights reserved.

Tell Me / Show Me
Propagating Exceptions to an Outer Block (continued)
In this example, an exception occurs during the execution of the inner 
block. The inner block’s EXCEPTION section does not deal with the 
exception.The inner block terminates unsuccessfully and PL/SQL passes 
(propagates) the exception to the outer block.The outer block’s 
EXCEPTION section successfully handles the exception.

DECLARE    -- outer block
e_no_rows     EXCEPTION;

BEGIN
BEGIN -- inner block
IF ... THEN RAISE e_no_rows; –- exception occurs here
...

END; -- Inner block terminates unsuccessfully
...  -- Remaining code in outer block’s executable
... -- section is skipped
EXCEPTION
WHEN e_no_rows THEN – outer block handles the exception
...

END;



21

Recognizing the Scope of Variables

Copyright © 2009, Oracle.  All rights reserved.

Tell Me / Show Me
Propagating Exceptions from a Sub-Block
If a PL/SQL raises an exception and the current 
block does not have a handler for that exception, 
the exception propagates to successive enclosing 
blocks until it finds a handler. 
When the exception propagates to an enclosing 
block, the remaining executable actions in that 
block are bypassed.
One advantage of this behavior is that you can 
enclose statements that require their own exclusive 
error handling in their own block, while leaving 
more general exception handling (for example 
WHEN OTHERS) to the enclosing block.

The next slide shows an example of this.



22

Recognizing the Scope of Variables

Copyright © 2009, Oracle.  All rights reserved.

Tell Me / Show Me
Propagating Predefined Oracle Server Exceptions from a Sub-Block
Employee_id 999 does not exist. What is displayed when this 
code is executed?

DECLARE
v_last_name    employees.last_name%TYPE;

BEGIN
BEGIN

SELECT last_name INTO v_last_name
FROM employees WHERE employee_id = 999;

DBMS_OUTPUT.PUT_LINE('Message 1');
EXCEPTION

WHEN TOO_MANY_ROWS THEN
DBMS_OUTPUT.PUT_LINE('Message 2');

END;
DBMS_OUTPUT.PUT_LINE('Message 3');

EXCEPTION
WHEN OTHERS THEN

DBMS_OUTPUT.PUT_LINE('Message 4');
END;



23

Recognizing the Scope of Variables

Copyright © 2009, Oracle.  All rights reserved.

Tell Me / Show Me
Propagating User-named Exceptions from a Sub-Block
What happens when this code is executed?

BEGIN
DECLARE

e_myexcep    EXCEPTION;
BEGIN

RAISE e_myexcep;
DBMS_OUTPUT.PUT_LINE('Message 1');

EXCEPTION
WHEN TOO_MANY_ROWS THEN

DBMS_OUTPUT.PUT_LINE('Message 2');
END;
DBMS_OUTPUT.PUT_LINE('Message 3');

EXCEPTION
WHEN e_myexcep THEN

DBMS_OUTPUT.PUT_LINE('Message 4');
END;



24

Recognizing the Scope of Variables

Copyright © 2009, Oracle.  All rights reserved.

Tell Me / Show Me
Scope of Exception Names

Predefined Oracle server exceptions, such as NO_DATA_FOUND, 
TOO_MANY_ROWS, and OTHERS are not declared by the 
programmer. They can be raised in any block and handled in 
any block.

User-named exceptions (non-predefined Oracle server 
exceptions and user-defined exceptions) are declared by the 
programmer as variables of type EXCEPTION. They follow the 
same scoping rules as other variables.

Therefore, a user-named exception declared within an inner 
block cannot be referenced in the exception section of an outer 
block.



25

Recognizing the Scope of Variables

Copyright © 2009, Oracle.  All rights reserved.

Tell Me / Show Me
Terminology
Key terms used in this lesson include:

Scope
Visibility
Qualifier



26

Recognizing the Scope of Variables

Copyright © 2009, Oracle.  All rights reserved.

Summary
In this lesson, you learned to: 

• Describe the rules for variable scope when 
a variable is nested in a block. 

• Recognize a variable-scope issue when a 
variable is used in nested blocks

• Qualify a variable nested in a block with a 
label

• Describe the scope of an exception
• Recognize an exception-scope issue when 

an exception is within nested blocks
• Describe the effect of exception propagation 

in nested blocks



27

Recognizing the Scope of Variables

Copyright © 2009, Oracle.  All rights reserved.

Try It / Solve It
The exercises in this lesson cover the following 
topics:
• Describing the rules for variable scope when 

a variable is nested in a block. 
• Recognizing a variable-scope issue when a 

variable is used in nested blocks
• Qualifying a variable nested in a block with a 

label
• Describing the scope of an exception
• Recognizing an exception-scope issue when 

an exception is within nested blocks
• Describing the effect of exception 

propagation in nested blocks


	Recognizing the Scope of Variables
	What Will I Learn?
	Why Learn It?
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Summary	
	Try It / Solve It

