
Copyright © 2008, Oracle. All rights reserved.

Creating Functions

2

Creating Functions

Copyright © 2008, Oracle. All rights reserved.

What Will I Learn?
In this lesson, you will learn to:

• Define a stored function
• Create a PL/SQL block

containing a function
• List ways in which you can

invoke a function
• Create a PL/SQL block that

invokes a function that has
parameters

• List the development steps for
creating a function

• Describe the differences
between procedures and
functions

3

Creating Functions

Copyright © 2008, Oracle. All rights reserved.

Why Learn It?
In this lesson, you learn how to create and
invoke functions. A function is a
subprogram that must return exactly one
value.

A procedure is a standalone executable
statement, whereas a function can only
exist as part of an executable statement.

Functions are an integral part of modular
code. Business rules and/or formulas can
be placed in functions so that they can be
easily reused.

4

Creating Functions

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
What Is a Stored Function?

• A function is a named PL/SQL block (a subprogram) that can
accept optional IN parameters and must return a single
output value.

• Functions are stored in the database as schema objects for
repeated execution.

5

Creating Functions

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
What Is a Stored Function? (continued)
• A function can be called as part of an SQL expression or as part

of a PL/SQL expression.
– Certain return types, for example, Boolean, prevent a function

from being called as part of a SELECT.
• In SQL expressions, a function must obey specific rules to

control side effects. Side effects to be avoided are:
– Any kind of DML or DDL
– COMMIT or ROLLBACK
– Altering global variables

• In PL/SQL expressions, the function identifier acts like a
variable whose value depends on the parameters passed to it.

6

Creating Functions

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Syntax for Creating Functions
The PL/SQL block must have at least one RETURN statement.

The header is like a PROCEDURE header with two differences:
1. The parameter mode should only be IN.
2. The RETURN clause is used instead of an OUT mode.

CREATE [OR REPLACE] FUNCTION function_name
[(parameter1 [mode1] datatype1, ...)]
RETURN datatype IS|AS
[local_variable_declarations; …]
BEGIN
-- actions;
RETURN expression;

END [function_name];

PL/SQL Block

7

Creating Functions

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Syntax for Creating Functions (continued)

• A function is a PL/SQL subprogram that returns a single
value. You must provide a RETURN statement to return a
value with a data type that is consistent with the function
declaration type.

• You create new functions with the CREATE [OR REPLACE]
FUNCTION statement, which can declare a list of
parameters, must return exactly one value, and must define
the actions to be performed by the PL/SQL block.

8

Creating Functions

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Stored Function With a Parameter: Example
• Create the function:

• Invoke the function as an expression or as a parameter
value:

CREATE OR REPLACE FUNCTION get_sal
(p_id employees.employee_id%TYPE)
RETURN NUMBER IS
v_sal employees.salary%TYPE := 0;

BEGIN
SELECT salary
INTO v_sal
FROM employees
WHERE employee_id = p_id;

RETURN v_sal;
END get_sal;

... v_salary := get_sal(100);

9

Creating Functions

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
You can RETURN from the executable section and/or from the
EXCEPTION section.
• Create the function

• Invoke the function as an expression with a bad parameter

CREATE OR REPLACE FUNCTION get_sal
(p_id employees.employee_id%TYPE) RETURN NUMBER IS
v_sal employees.salary%TYPE := 0;

BEGIN
SELECT salary INTO v_sal
FROM employees WHERE employee_id = p_id;

RETURN v_sal;
EXCEPTION
WHEN NO_DATA_FOUND THEN RETURN NULL;

END get_sal;

... v_salary := get_sal(999);

10

Creating Functions

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Ways to Invoke (or Execute) Functions With Parameters
• Invoke as part of a PL/SQL expression, using a local variable

to store the returned result

• Use as a parameter to another subprogram

• Use in an SQL statement (subject to restrictions)

... DBMS_OUTPUT.PUT_LINE(get_sal(100));

SELECT job_id, get_sal(employee_id) FROM employees;

DECLARE v_sal employees.salary%type;
BEGIN
v_sal := get_sal(100); ...

END;

A

C

B

11

Creating Functions

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Ways to Invoke (or Execute) Functions With Parameters
If functions are designed thoughtfully, they can be powerful
constructs. You can invoke functions in the following ways:
• As part of PL/SQL expressions: (A) Uses a local variable in

an anonymous block to hold the returned value from a
function.

• As a parameter to another subprogram: (B) Demonstrates
this usage. The get_sal function with all its arguments is
nested in the parameter required by the
DBMS_OUTPUT.PUT_LINE procedure.

• As an expression in an SQL statement: (C) Shows how you
can use a function as a single-row function in an SQL
statement.

Note: The restrictions that apply to functions when used in an
SQL statement are discussed in the next lesson.

12

Creating Functions

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Invoking Functions Without Parameters
Most functions have parameters, but not all. The following are
system functions USER and SYSDATE without parameters.
• Invoke as part of a PL/SQL expression, using a local variable to

obtain the result

• Use as a parameter to another subprogram

• Use in an SQL statement (subject to restrictions)

... DBMS_OUTPUT.PUT_LINE(USER);

SELECT job_id, SYSDATE-hiredate FROM employees;

DECLARE v_today DATE;
BEGIN
v_today := SYSDATE; ...

END;

13

Creating Functions

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Benefits and Restrictions That Apply to Functions
+ Try things quickly: Functions allow you to temporarily display

a value in a new format: a different case, annually vs.
monthly (times 12), concatenated or with substrings.

+ Extend functionality: Add new features, such as spell
checking and parsing.

– Restrictions: PL/SQL types do not completely overlap with
SQL types. What is fine for PL/SQL (for example, BOOLEAN,
RECORD) might be invalid for a SELECT.

– Restrictions: PL/SQL sizes are not the same as SQL sizes.
For instance, a PL/SQL VARCHAR2 variable can be up to
32 KB, whereas an SQL VARCHAR2 column can be only up
to 4 KB.

14

Creating Functions

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Syntax Differences Between Procedures and Functions

CREATE [OR REPLACE] PROCEDURE name [parameters] IS|AS (Mandatory)
Variables, cursors, etc. (Optional)

BEGIN (Mandatory)
SQL and PL/SQL statements;

EXCEPTION (Optional)
WHEN exception-handling actions;

END [name]; (Mandatory)

CREATE [OR REPLACE] FUNCTION name [parameters] (Mandatory)
RETURN datatype IS|AS (Mandatory)
Variables, cursors, etc. (Optional)

BEGIN (Mandatory)
SQL and PL/SQL statements;
RETURN ...; (One Mandatory, more optional)

EXCEPTION (Optional)
WHEN exception-handling actions;

END [name]; (Mandatory)

Procedures

Functions

15

Creating Functions

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Differences/Similarities Between Procedures and Functions

Both can have zero or more IN parameters that can be passed
from the calling environment.
Both have the standard block structure including exception
handling.

Procedures
Execute as a PL/SQL
statement
Do not contain RETURN
clause in the header
Can return values (if any)
in output parameters
Can contain a RETURN
statement without a value

Functions
Invoke as part of an
expression
Must contain a RETURN
clause in the header
Must return a single value

Must contain at least one
RETURN statement

16

Creating Functions

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Differences Between Procedures and Functions
Procedures
• You create a procedure to store a series of actions for later

execution. A procedure does not have to return a value. A
procedure can call a function to assist with its actions.
Note: A procedure containing a single OUT parameter might
be better rewritten as a function returning the value.

Functions
• You create a function when you want to compute a value

that must be returned to the calling environment. Functions
return only a single value, and the value is returned through
a RETURN statement. The functions used in SQL statements
cannnot use OUT or IN OUT modes. Although a function
using OUT can be invoked from a PL/SQL procedure or
anonymous block, it cannot be used in SQL statements.

17

Creating Functions

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me

Terminology
Key terms used in this lesson include:

Stored function

18

Creating Functions

Copyright © 2008, Oracle. All rights reserved.

Summary
In this lesson, you learned to:
• Define a stored function
• Create a PL/SQL block

containing a function
• List ways in which a function

can be invoked
• Create a PL/SQL block that

invokes a function that has
parameters

• List the development steps for
creating a function

• Describe the differences
between procedures and
functions

19

Creating Functions

Copyright © 2008, Oracle. All rights reserved.

Try It / Solve It
The exercises in this lesson cover
the following topics:
• Defining a stored function
• Creating a function
• Listing how a function can be

invoked
• Invoking a function that has

parameters
• Listing the development steps

for creating a function
• Describing the differences

between procedures and
functions

	Creating Functions
	What Will I Learn?
	Why Learn It?
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Summary
	Try It / Solve It

