
1

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

An exception can be dealt with in two ways:
• Handling it (“trapping it”) in the block in which it occurs
• Propagating it to the calling environment

Exception
raised

Is the
exception
trapped?

yes

no

Handle with
exception
handler

Propagate
to calling

environment

Scope of Exceptions in Nested Blocks

Presenter
Presentation Notes
Tell students they will learn much more about exception handling in Section 6.

2

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Include an EXCEPTION section in your PL/SQL program to trap
exceptions. If the exception is raised in the executable section of
the block, processing is handled by the corresponding exception
handler in the exception section of the same block. If PL/SQL
successfully handles the exception, then the exception does not
propagate to the enclosing block or to the calling environment.
The PL/SQL block terminates successfully.

Exception
raised

Is the
exception
trapped?

yes
Execute statements
in the EXCEPTION

section

Terminate
gracefully

no

Propagate
to calling

environment

Trapping Exceptions with a Handler

3

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

In this example, an error occurs during the execution of
the inner block. The inner block’s EXCEPTION section
deals with the exception successfully, and PL/SQL
considers that this exception is now finished with. The
outer block resumes execution as normal.

BEGIN -- outer block
...

BEGIN -- inner block
... – exception_name occurs here
...
EXCEPTION
WHEN exception_name THEN -- handled here
...

END; -- inner block terminates successfully

... -- outer block continues execution
END;

Handling Exceptions in an Inner Block

4

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

If the exception is raised in the executable section of the inner
block and there is no corresponding exception handler, the
PL/SQL block terminates with failure and the exception is
propagated to an enclosing block.

Terminate
abruptly

Propagate
the

exception
Exception

raised

Is the
exception
trapped?

yes
Execute statements
in the EXCEPTION

section

Terminate
gracefully

no

Propagating Exceptions to an Outer Block

5

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

In this example, an error occurs during the execution of the inner block.
The inner block’s EXCEPTION section does not deal with the exception.
The inner block terminates unsuccessfully and PL/SQL passes the
exception to the outer block.The outer block’s EXCEPTION section
successfully handles the exception.

BEGIN -- outer block
...
BEGIN -- inner block
... – exception_name occurs here
...
END; -- Inner block terminates unsuccessfully

... -- Remaining code in outer block’s executable

... -- section is skipped
EXCEPTION
WHEN exception_name THEN – outer block handles the exception
...

END;

Propagating Exceptions to an Outer Block continued

6

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

If a PL/SQL raises an exception and the current block does not
have a handler for that exception, the exception propagates to
successive enclosing blocks until it finds a handler.
When the exception propagates to an enclosing block, the
remaining executable actions in that block are bypassed.
One advantage of this behavior is that you can enclose
statements that require their own exclusive error handling in their
own block, while leaving more general exception handling to the
enclosing block.
If none of these blocks handle the exception, an unhandled
exception occurs in the host environment (for example
Application Express).

Propagating Exceptions in a Subblock

Copyright © 2009, Oracle. All rights reserved.

Good Programming Practices

8

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

• Conversions
– Do not rely on implicit data type conversions because they can

be slower and the rules may change in later software releases.
• Declaring and initializing PL/SQL variables

– Use meaningful names
– Declare one identifier per line for readability and code

maintenance.
– Use the NOT NULL constraint when the variable must hold a value.
– Avoid using column names as identifiers.
– Use the %TYPE attribute to declare a variable according to

another previously declared variable or database column.

Good Programming Practices

9

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

• Developing a case convention for the code
• Developing naming conventions for identifiers and other

objects
• Documenting code with comments
• Enhancing readability by indenting

Good Programming Practices continued

10

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

• Add single line comments: two dashes (--) and multiple line
comments: between the symbols “/*” and “*/” to your code

Example:

DECLARE
...
v_annual_sal NUMBER (9,2);

BEGIN -- Begin the executable section

/* Compute the annual salary based on the
monthly salary input from the user */
v_annual_sal := v_monthly_sal * 12;

END; -- This is the end of the block

Good Programming Practices continued

Presenter
Presentation Notes
Commenting Code

Comment code to document each phase and to assist debugging. Comment the PL/SQL code with two dashes (--) if the comment is on a single line, or enclose the comment between the symbols “/*” and “*/” if the comment spans several lines. Comments are strictly informational and do not enforce any conditions or behavior on logic or data. Well-placed comments are extremely valuable for code readability and future code maintenance. In the example in the slide, the lines enclosed within “/*” and “*/” is a comment that explains the code that follows it.

11

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Use case conventions to help you distinguish keywords from
named objects.

Category Case Convention Examples

SQL keywords Uppercase SELECT, INSERT
PL/SQL keywords Uppercase DECLARE, BEGIN, IF

Data types Uppercase VARCHAR2, BOOLEAN

Identifiers and
parameters

Lowercase v_sal, emp_cursor, g_sal,
p_empno

Database tables and
columns

Lowercase employees, employee_id,
department_id

Good Programming Practices continued

Presenter
Presentation Notes
In a sense, it doesn’t matter which convention we use as long as (a) a meaningful convention exists, and (b) we use it consistently. The case convention described here is the one most commonly used in SQL and PL/SQL, and is also the one used in the Oracle product documentation.

12

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Use naming conventions that are clear, consistent and
unambiguous. One commonly-used convention is to name:

- variables starting with v_
- constants starting with c_
- parameters (passed to procedures and functions) starting with p_

• Indent each level of code for clarity

DECLARE
v_deptno NUMBER(4);
v_location_id NUMBER(4);

BEGIN
SELECT department_id,

location_id
INTO v_deptno,

v_location_id
FROM departments
WHERE department_name = 'Sales';

...
END;

Good Programming Practices continued

Copyright © 2009, Oracle. All rights reserved.

Review of SQL DML

14

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

You can use DML commands to modify the data in a database
table.
INSERT

The INSERT statement is used to add new rows to a table
and contains three components:
• The name of the table
• The names of the columns in the table to populate
• Values for the columns

INSERT INTO art (id, title, artist, description)
VALUES (35, 'Mona Lisa', 'Leonardo da Vinci', 'oil painting');

Data Manipulation Language (DML)

15

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

You may insert values in a table without listing the column
names. This is not recommended due to the potential of
columns being added to the table.

The values for each column must match the default order in
which they appear in the table, and a value must be provided for
each column.

INSERT INTO art
VALUES (40, 'The Violinist', 'Marc Chagall', 'oil painting');

INSERT

Presenter
Presentation Notes
Although this is possible, it is not recommended. The ART table has four columns. What if the DBA later adds a fifth column using a DDL ALTER TABLE statement? The INSERT statement above would not work anymore.

16

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

The UPDATE statement is used to modify existing data in a
table. It requires at least three values:
• The name of the table
• The name of the column in the table to modify
• A corresponding value or subquery for the column
• A condition can be optionally added that identifies the

rows to be modified by the statement.

UPDATE art
SET description = 'Stained Glass Window'
WHERE id = 40;

ID TITLE ARTIST DESCRIPTION
10 Guerrica Pablo Picasso oil painting
20 Skriget Edvard Munch oil painting
30 Femmes de Tahiti (Sur la plage) Paul Gauguin oil painting
35 Mona Lisa Leonardo da Vinci oil painting
40 Stained Glass window at the United Nations Building, New York Leonardo da Vinci oil painting

Stained

UPDATE

Presenter
Presentation Notes
Remind students that:

- if the WHERE clause is omitted, all rows will be modified

- More than one column can be modified. Example:

 UPDATE art

 SET description = ‘marble sculpture’,

 artist = ‘Michaelangelo’

 WHERE ….

17

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

The DELETE statement is used to remove existing rows from a
table. The statement contains:
• The name of the table
• A condition can be optionally added that identifies the rows

to be deleted.
In the example shown, the highlighted row will be deleted.

DELETE FROM art
WHERE id = 10;

ID TITLE ARTIST DESCRIPTION

10 Guernica Pablo Picasso oil painting

20 Skriget Edvard Munch oil painting

30 Femmes de Tahiti (Sur la plage) Paul Gauguin oil painting

35 Mona Lisa Leonardo da Vinci oil painting

40 Stained Glass window at the United Nations Building, New York Marc Chagall Stained Glass Window

DELETE

Presenter
Presentation Notes
Instructor Note

Remind students that all rows in the table are deleted if you omit the WHERE clause.

18

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

The MERGE statement will INSERT and/or UPDATE a target table,
based on matching values in a source table. If a matching value
is missing, a new row is inserted. If a matching value exists, but
needs to be changed, then MERGE will update it.

Merge the
data from the
ITEMS table
into:

The ART table

35 Mona Lisa Leonardo da Vinci oil painting

ITEM_ID TITLE ARTIST DESCRIPTION

20 Skriget Edward Munch oil painting

30 Femmes de Tahiti (Sur la plage) Paul Gauguin oil painting

40 Stained Glass window at the United Nations Building, New York Marc Chagall Stained Glass Window

35 Mona Lisa Leonardo da Vinci Small Oil Painting on Wood

ITEM_ID TITLE ARTIST DESCRIPTION
1 Madonna Edward Munch oil painting

3 Femmes de Tahiti (Sur la plage) Paul Gauguin oil painting

4 Stained Glass window at the United Nations Building, New York Paul Gauguin oil painting

MERGE

Presenter
Presentation Notes
Instructor Note

Ask the students to identify the differences in the table structures between the two tables. (Answer: The ITEMS table has a column named ITEM_ID, whereas the ART table has a column named ID).

Ask the students to identify any duplicate data. (Answer: The Michaelangelo piece, “Pietà,” is found in both tables, but the descriptions are different.)

Ask the students as to how to handle the duplicate data. (One answer: Update the Art table with the description in the Items table.)

19

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

The statement shown uses ITEMS (alias i) as the source table to
merge and update information into ART (alias a), the target table.

MERGE INTO art a
USING items i

ON (a.id = i.item_id)
WHEN MATCHED
THEN UPDATE SET

a.artist = i.artist,
a.description = e.description

WHEN NOT MATCHED
THEN INSERT

VALUES(i.item_id, i.title, i.artist, i.description);

The ART table
after the MERGE

35 Mona Lisa Leonardo de Vinci Small oil painting on Wood

ID TITLE ARTIST DESCRIPTION
1 Madonna Edvard Munch oil painting

4 Stained Glass window at the United Nations Building, New York Marc Chagall Stained Glass Window

20 Skriget Edvard Munch oil painting
30 Femmes de Tahiti (Sur la plage) Paul Gauguin oil painting

40 Stained Glass window at the United Nations Building, New York Marc Chagall Stained Glass Window

3 Femmes de Tahiti (Sur la plage) Paul Gauguin oil painting

MERGE

Copyright © 2009, Oracle. All rights reserved.

Retrieving Data in PL/SQL

21

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

You can use the following kinds of SQL statements in PL/SQL:
• SELECT to retrieve data from the database
• DML statements such as INSERT, UPDATE, and DELETE to

make changes to rows in the database
• Transaction control statements such as COMMIT, ROLLBACK,

or SAVEPOINT. You use transaction control statements to
make the changes to the database permanent or to discard
them.

SQL Statements in PL/SQL

22

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

DDL (CREATE TABLE, ALTER TABLE, DROP TABLE) and DCL (GRANT,
REVOKE) cannot be used directly in PL/SQL.
These statements cannot be directly executed because they are
constructed and executed at run time. That is, they are dynamic.
Static SQL statements are statements that are fixed at the time a
program is compiled.

SQL Statements in PL/SQL

Presenter
Presentation Notes
Instructor Note

If applications have to create database objects at run time by passing values, then early binding cannot happen in such cases.

	Consider the following example:

BEGIN

 CREATE TABLE my_emp_table AS SELECT * FROM employees;

END;

The example tries to use a DDL statement directly in the block. When you execute the block, you will see the following error:

ORA-06550: line 2, column 3:

PLS-00103: Encountered the symbol "CREATE" when expecting one of the following:

……

 The indirect way of working with DDL statements is to use EXECUTE IMMEDIATE. This is explained later in the course.

23

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Retrieve data from the database with a SELECT statement. The
INTO clause is mandatory and occurs between the SELECT and
FROM clauses. It is used to specify the names of PL/SQL
variables that hold the values that SQL returns from the SELECT
clause. You must specify one variable for each item selected,
and the order of the variables must correspond with the items
selected.

DECLARE
v_fname employees.first_name%TYPE;

BEGIN
SELECT first_name INTO v_fname
FROM employees WHERE employee_id=200;

DBMS_OUTPUT.PUT_LINE('First Name is ' || v_fname);
END;

SELECT Statements in PL/SQL

Presenter
Presentation Notes
SELECT Statements in PL/SQL

Use the SELECT statement to retrieve data from the database. In the syntax:

select_list		Is a list of at least one column and can include SQL expressions, row functions, or group functions

variable_name	Is a scalar variable that holds a retrieved value

record_name	Is the PL/SQL record that holds the retrieved values

table			Specifies the database table name

condition		Is composed of column names, expressions, constants, and comparison operators, including PL/SQL variables and 				constants

24

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Retrieve hire_date and salary for the specified employee.

DECLARE
v_emp_hiredate employees.hire_date%TYPE;
v_emp_salary employees.salary%TYPE;

BEGIN
SELECT hire_date, salary
INTO v_emp_hiredate, v_emp_salary
FROM employees
WHERE employee_id = 100;

DBMS_OUTPUT.PUT_LINE('Hiredate is: ' || v_emp_hiredate
|| ' and Salary is: '
|| v_emp_salary);

END;

SELECT Statements in PL/SQL continued

Presenter
Presentation Notes
Retrieving Data in PL/SQL

In the example in the slide, the emp_hiredate and emp_salary variables are declared in the declarative section of the PL/SQL block. In the executable section, the values of the columns hire_date and salary for the employee with the employee_id 100 is retrieved from the employees table and stored in the emp_hiredate and emp_salary variables, respectively. Observe how the INTO clause, along with the SELECT statement, retrieves the database column values into the PL/SQL variables.

Note: The SELECT statement is retrieving hire_date and then salary and therefore the variables in the INTO clause also must be in the same order. For example, if you interchange emp_hiredate and emp_salary in the above statement, the statement will result in an error.

25

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

SELECT statements within a PL/SQL block fall into the ANSI
classification of embedded SQL, for which the following rule
applies: queries must return exactly one row. A query that
returns more than one row or no rows generates an error.

DECLARE
v_salary employees.salary%TYPE;

BEGIN
SELECT salary INTO v_salary

FROM employees;
DBMS_OUTPUT.PUT_LINE(' Salary is : '||v_salary);

END;

ORA-01422: exact fetch returns more than requested number of rows

SELECT Statements in PL/SQL continued

Presenter
Presentation Notes
SELECT Statements in PL/SQL

How to Retrieve Multiple Rows from a Table and Operate on the Data

A SELECT statement with the INTO clause can retrieve only one row at a time. If your requirement is to retrieve multiple rows and operate on the data, then you can make use of explicit cursors. You will learn about cursors later in the course.

Instructor Note

If students are curious about exception handling or cursors, or both, below are two sample programs involving these topics.

Exception Handling

DECLARE

 v_salary employees.salary%TYPE;

BEGIN

 SELECT salary INTO v_salary

 FROM employees;

 DBMS_OUTPUT.PUT_LINE(' Salary is : '||v_salary);

EXCEPTION

 WHEN TOO_MANY_ROWS THEN

	DBMS_OUTPUT.PUT_LINE(SQLERRM);

END;

Cursors

DECLARE

 CURSOR c1 IS

 	SELECT first_name, last_name, salary

	 FROM employees

	 WHERE salary>10000;

BEGIN

 FOR v_sal IN c1 LOOP

	DBMS_OUTPUT.PUT_LINE(v_sal.first_name||' '||v_sal.last_name||'''s salary is: '||v_sal.salary);

 END LOOP;

END;

26

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

• Terminate each SQL statement with a semicolon (;).
• Every value retrieved must be stored in a variable using

the INTO clause.
• The WHERE clause is optional and can contain input

variables, constants, literals, or PL/SQL expressions.
However, you should fetch only one row and the usage
of the WHERE clause is therefore needed in nearly all
cases.

• Specify the same number of variables in the INTO clause
as database columns in the SELECT clause. Be sure that
they correspond positionally and that their data types are
compatible.

• Declare the receiving variables using %TYPE.

Guidelines for Retrieving Data in PL/SQL

Presenter
Presentation Notes
Bullet point 3: the WHERE clause is not needed only if the table can contain only one row, for example the DUAL table.

27

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

In potentially ambiguous SQL statements, the names of database
columns take precedence over the names of local variables. This
example raises an unhandled run-time exception because in the
WHERE clause, the PL/SQL variable name is the same as that of
the database column name in the employees table.

DECLARE
v_hire_date employees.hire_date%TYPE;
employee_id employees.employee_id%TYPE := 176;

BEGIN
SELECT hire_date

INTO v_hire_date
FROM employees
WHERE employee_id = employee_id;

END;

ORA-01422: exact fetch returns more than requested number of rows

Guidelines for Naming Conventions

Presenter
Presentation Notes
Instructor Note

The example shown in the slide is defined as follows: Retrieve the hire date and today’s date from the employees table for employee_id 176. This example raises an unhandled run-time exception because in the WHERE clause, the PL/SQL variable name EMPLOYEE_ID is the same as that of the database column name in the employees table. Explain that for any table and any column, the condition “WHERE column_name = column_name” is TRUE for all rows with a non-null value in the column.

If students struggle with this, demonstrate the following SELECT statement directly, ie not in a PL/SQL block:

SELECT hire_date FROM employees

 WHERE employee_id = employee_id;

28

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

What is deleted in the following PL/SQL block?

DECLARE
last_name VARCHAR2(25) := 'King';

BEGIN
DELETE FROM emp_dup WHERE last_name = last_name;

END;

Guidelines for Naming Conventions continued

Presenter
Presentation Notes
To test this, run the following statements:

CREATE TABLE emp_dup AS SELECT * from employees;

SELECT first_name, last_name FROM emp_dup;

DECLARE

 last_name VARCHAR2(25) := 'King';

BEGIN

 DELETE FROM emp_dup WHERE last_name = last_name;

END;

SELECT first_name, last_name FROM emp_dup;

Answer

The DELETE statement removes all employees from the employees table as opposed to just the records that contain the last name “King”.This is because the Oracle server cannot differentiate between the database column last_name and the declared variable last_name.

29

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

• Use a naming convention to avoid ambiguity in the WHERE
clause.

• Avoid using database column names as identifiers.
• Errors can arise because PL/SQL checks the database first

for a column in the table.
• The names of local variables and formal parameters take

precedence over the names of database tables.
• The names of database table columns take precedence over

the names of local variables.

Guidelines for Naming Conventions continued

Presenter
Presentation Notes
Naming Conventions

Avoid ambiguity in the WHERE clause by adhering to a naming convention that distinguishes database column names from PL/SQL variable names.

Database columns and identifiers should have distinct names.

Syntax errors can arise because PL/SQL checks the database first for a column in the table.

Note: There is no possibility for ambiguity in the SELECT clause because any identifier in the SELECT clause must be a database column name. There is no possibility for ambiguity in the INTO clause because identifiers in the INTO clause must be PL/SQL variables. There is the possibility of a confusion only in the WHERE clause.

Copyright © 2009, Oracle. All rights reserved.

Manipulating Data in PL/SQL

31

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Make changes to data by using DML
commands within your PLSQL block:
• INSERT
• UPDATE
• DELETE
• MERGE

INSERT

UPDATE

DELETE

MERGE

Manipulating Data Using PL/SQL

32

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

• You can issue the DML commands—INSERT, UPDATE, DELETE
and MERGE—without restriction in PL/SQL. Row locks (and table
locks) are released by including COMMIT or ROLLBACK statements
in the PL/SQL code.
– The INSERT statement adds new rows to the table.
– The UPDATE statement modifies existing data in the table.
– The DELETE statement removes rows from the table.
– The MERGE statement selects rows from one table to update and/or

insert into another table. The decision whether to update or insert into
the target table is based on a condition in the ON clause.

• Note: MERGE is a deterministic statement—that is, you cannot
update the same row of the target table multiple times in the same
MERGE statement. You must have INSERT and UPDATE object
privileges on the target table and SELECT privilege on the source
table.

Manipulating Data Using PL/SQL (continued)

33

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

BEGIN
INSERT INTO copy_emp

(employee_id, first_name, last_name, email,
hire_date, job_id, salary)

VALUES(99, 'Ruth', 'Cores',
'RCORES',SYSDATE, 'AD_ASST', 4000);

END;

Updating Data

DECLARE
v_sal_increase employees.salary%TYPE := 800;

BEGIN
UPDATE copy_emp
SET salary = salary + v_sal_increase
WHERE job_id = 'ST_CLERK';

END;

Inserting Data

Presenter
Presentation Notes
Important Note: The data in the EMPLOYEES table needs to remain unchanged for later in the course. Therefore we use the COPY_EMP table in all these DML examples.

Inserting Data

In the example in the slide, an INSERT statement is used within a PL/SQL block to insert a record into the COPY_EMP table. While using the INSERT command in a PL/SQL block, you can:

Use SQL functions, such as USER and SYSDATE

Generate primary key values by using existing database sequences

Derive values in the PL/SQL block.

34

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

DECLARE
v_deptno employees.department_id%TYPE := 10;

BEGIN
DELETE FROM copy_emp
WHERE department_id = v_deptno;

END;

Merging Rows

BEGIN
MERGE INTO copy_emp c

USING employees e
ON (e.employee_id = c.employee_id)

WHEN MATCHED THEN
UPDATE SET

c.first_name = e.first_name,
…

WHEN NOT MATCHED THEN
INSERT VALUES(e.employee_id, e.first_name, …e.department_id);

END;

Deleting Data

Presenter
Presentation Notes
Deleting Data

The DELETE statement removes unwanted rows from a table. If the WHERE clause is not used, then all the rows in a table will be removed, provided that there are no integrity constraints.

Instructor Note

Refer to the code file for more information and queries illustrating integrity constraints.

35

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Look again at the DELETE statement in this PL/SQL block.

It would be useful to know how many COPY_EMP rows were
deleted by this statement.

To obtain this information, we need to understand cursors.

DECLARE
v_deptno employees.department_id%TYPE := 10;

BEGIN
DELETE FROM copy_emp
WHERE department_id = v_deptno;

END;

Getting information from a Cursor

36

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Every time a SQL statement is about to be executed, the Oracle
server allocates a private memory are a called an implicit cursor
to store the SQL statements and the data which it uses.

Because this memory area is automatically managed by the
Oracle server, you have no direct control over it. However, you
can use predefined PL/SQL variables, called implicit cursor
attributes, to find out how many rows were processed by the SQL
statement.

An implicit cursor is always automatically named “SQL”

What is a Cursor?

Presenter
Presentation Notes
Instructor note:

The word “cursor” has several meanings in Oracle. It is sometimes used to mean a pointer to the private memory area, rather than the memory area itself. It is also used to refer to an area of shared memory. In thıs course, we focus only on its meaning in the PL/SQL environment.

37

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Cursor attributes are automatically declared variables which allow you to
evaluate what happened when a cursor was last used. Attributes for
implicit cursors are prefaced with “SQL”. Use these attributes in PL/SQL
statements, but not in SQL statements. Using cursor attributes, you can
test the outcome of your SQL statements.

SQL%FOUND Boolean attribute that evaluates to TRUE if the

most recent SQL statement returned at least one
row

SQL%NOTFOUND Boolean attribute that evaluates to TRUE if

the most recent SQL statement did not
return even one row

SQL%ROWCOUNT An integer value that represents the number of
rows affected by the most recent SQL statement

Cursor Attributes for Implicit Cursors

Presenter
Presentation Notes
SQL Cursor Attributes for Implicit Cursors

You can test the attributes—SQL%ROWCOUNT, SQL%FOUND, and SQL%NOTFOUND—in the executable section of a block to gather information after the appropriate command. PL/SQL does not return an error if a DML statement does not affect any rows in the underlying table. However, if a SELECT statement does not retrieve any rows, PL/SQL returns an exception.

Observe that the attributes are prefixed with the automatic name of the implicit cursor: “SQL”.

The SQL%NOTFOUND attribute is opposite to SQL%FOUND. This attribute may be used as the exit condition in a loop. It is useful in UPDATE or DELETE statements when no rows are changed because exceptions are not returned in these cases.

You will learn about explicit cursor attributes later in the course.

38

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

BEGIN
UPDATE copy_emp
SET salary = salary + 100
WHERE job_id = 'ST_CLERK';

DBMS_OUTPUT.PUT_LINE(SQL%ROWCOUNT ||
' rows updated.');

END;

Example using Cursor attributes:

Presenter
Presentation Notes
SQL Cursor Attributes for Implicit Cursors (continued)

The example in the slide deletes a row with employee_id 176 from the copy_emp table. Using the SQL%ROWCOUNT attribute, you can print the number of rows deleted.

Copyright © 2009, Oracle. All rights reserved.

Using Transaction Control Statements

40

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

A transaction is an inseparable list of database operations, which
must be executed either in its entirety or not at all. Transactions
maintain data integrity and guarantee that the database will
always be in a consistent state.
To illustrate the concept of a transaction, consider a banking
database. When a bank customer transfers money from a
savings account to a checking account, the transaction can
consist of three separate operations:

Decrease
savings
account
balance.

Increase
checking
account
balance.

Record the
transaction in

the transaction
journal.

Transaction

Database Transaction

41

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

What would happen if there were insufficient funds in the savings
account? Would the funds still be added to the checking
account? Would an entry be logged in the transaction journal?
What do you think should happen?

Decrease
savings
account.

Increase
checking
account.

Record the
transaction in

the transaction
journal.

UPDATE savings_accounts
SET balance = balance - 500
WHERE account = 3209;

UPDATE checking_accounts
SET balance = balance + 500
WHERE account = 3208;

INSERT INTO journal VALUES
(journal_seq.NEXTVAL, '1B'
3209, 3208, 500);

Example of a Transaction continued

42

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

If all three SQL statements can be performed to maintain the
accounts in proper balance, the effects of the transaction can be
committed, or applied to the database tables.

If OK, then

If OK, then

Decrease
savings
account.

Increase
checking
account.

Record the
transaction in

the transaction
journal.

If OK, then
COMMIT!

Example of a Transaction (continued)

43

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

However, if a problem such as insufficient funds, invalid account
number, or a hardware failure prevents one or two of the
statements in the transaction from completing, the entire
transaction must be rolled back (ie reversed out) so that the
balance of all accounts is correct.

If OK, then

If not OK, then

Decrease
savings
account.

Increase
checking
account.

Record the
transaction in

the transaction
journal.

ROLLBACK!

Example of a Transaction

44

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

You use transaction control statements to make the changes to
the database permanent or to discard them. The three main
transaction control statements are:
• COMMIT
• ROLLBACK
• SAVEPOINT

The transaction control commands are valid in PL/SQL and
therefore can be directly used in the executable or exception
section of a PL/SQL block.

Transaction Control Statements

45

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

If a transaction ends with a COMMIT statement, all the changes
made to the database during that transaction are made
permanent.

Important: The keyword END signals the end of a PL/SQL block,
not the end of a transaction.

BEGIN
INSERT INTO pairtable VALUES (1, 2);
COMMIT;

END;

ROLLBACK is for discarding any changes that were made to the
database after the last COMMIT. If the transaction fails, or ends
with a ROLLBACK, then none of the statements takes effect.

BEGIN
INSERT INTO pairtable VALUES (3, 4);
ROLLBACK;
INSERT INTO pairtable VALUES (5, 6);
COMMIT;

END;

COMMIT is used to make the database changes permanent.

46

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

BEGIN
INSERT INTO pairtable VALUES (7, 8);
SAVEPOINT my_sp_1;
INSERT INTO pairtable VALUES (9, 10);
SAVEPOINT my_sp_2;
INSERT INTO pairtable VALUES (11, 12);
ROLLBACK to my_sp_1;
INSERT INTO pairtable VALUES (13, 14);
COMMIT;

END;

Only ROLLBACK can be used to a SAVEPOINT.

SAVEPOINT is used to mark an intermediate point in
transaction processing.

Presenter
Presentation Notes
SAVEPOINT

SAVEPOINTs are useful in application programs. If a procedure contains several functions, then you can create a SAVEPOINT before each function begins. Then, if a function fails, it is easy to return the data to its state before the function began and re-run the function with revised parameters or perform a recovery action.

Copyright © 2009, Oracle. All rights reserved.

Conditional Control: IF Statements

48

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

You can change the logical flow of statements within the
PL/SQL block with any of three control structures.

IF statement
The IF statement contains alternative courses of action in a
block based on conditions. A condition is an expression with a
TRUE or FALSE value that is used to make a decision.
Consider the following example:

if the region_id is in (6, 9, 12)
then print "AMERICAS"

otherwise, if the region_id is in (7, 8, 1)
then print "EMEA"

otherwise, if the region_id is in (4, 5, 13)
then print "ASIA"

Conditions

Controlling the Flow of Execution

49

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

CASE statements are similar to IF statements in that they also
determine a course of action based on conditions. They are
different in that they can be used outside of a PL/SQL block in
a SQL statement.

LOOP control structures

LOOP control structures are repetition statements that enable
you to execute statements in a PL/SQL block repeatedly.
There are three types of loop control structures supported by
PL/SQL, BASIC, FOR, and WHILE.

CASE statements and loops will be discussed in later lessons.

CASE Statements

50

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

The structure of the PL/SQL IF statement is similar to the
structure of IF statements in other procedural languages. It
enables PL/SQL to perform actions selectively based on
conditions.

IF condition THEN statements;
[ELSIF condition THEN statements;]
[ELSE statements;]
END IF;

• condition Is a Boolean variable or expression that returns TRUE, FALSE,
or NULL

• THEN Introduces a clause that associates the Boolean expression with
the sequence of statements that follows it

• statements Can be one or more PL/SQL or SQL statements. (They may
include further IF statements containing several nested IF, ELSE, and
ELSIF statements.) The statements in the THEN clause are executed
only if the condition in the associated IF clause evaluates to TRUE.

IF Statements

51

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

• ELSIF Is a keyword that introduces a Boolean expression. (If the
first condition yields FALSE or NULL, then the ELSIF keyword
introduces additional conditions.)

• ELSE Introduces the default clause that is executed if and only if
none of the earlier predicates (introduced by IF and ELSIF) is TRUE.
The tests are executed in sequence so that a later predicate that
might be true is pre-empted by an earlier predicate that is true.

• END IF; Marks the end of an IF statement
Note: ELSIF and ELSE are optional in an IF statement. You

can have any number of ELSIF keywords but only one ELSE
keyword in your IF statement.

IF condition THEN statements;
[ELSIF condition THEN statements;]
[ELSE statements;]
END IF;

IF Statements continued

52

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

DECLARE
v_myage NUMBER:=31;

BEGIN
IF v_myage < 11
THEN

DBMS_OUTPUT.PUT_LINE(' I am a child ');
END IF;

END;

DECLARE
v_myage NUMBER:=31;

BEGIN
IF v_myage < 11
THEN

DBMS_OUTPUT.PUT_LINE(' I am a child ');
ELSE

DBMS_OUTPUT.PUT_LINE(' I am not a child ');
END IF;

END;

Examples:

53

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

DECLARE
v_myage NUMBER:=31;

BEGIN
IF v_myage < 11 THEN DBMS_OUTPUT.PUT_LINE('I am a child');
ELSIF v_myage < 20 THEN DBMS_OUTPUT.PUT_LINE('I am young');
ELSIF v_myage < 30 THEN

DBMS_OUTPUT.PUT_LINE('I am in my twenties');
ELSIF v_myage < 40 THEN

DBMS_OUTPUT.PUT_LINE('I am in my thirties');
ELSE DBMS_OUTPUT.PUT_LINE('I am always young');
END IF;

END;

DECLARE
v_myage NUMBER := 31;
v_myfirstname VARCHAR2(11) := 'Christopher';

BEGIN
IF v_myfirstname ='Christopher' AND v_myage < 11
THEN

DBMS_OUTPUT.PUT_LINE(' I am a child named Christopher');
END IF;

END;

Examples continued:

Presenter
Presentation Notes
Point out that ELSIF (not ELSEIF!) is one word but END IF is two words.

54

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

In this example, the myage variable is declared but is not
initialized. The condition in the IF statement returns NULL, and
not TRUE or FALSE. In such a case, the control goes to the ELSE
statement because just like FALSE, NULL is not TRUE.

DECLARE
v_myage NUMBER;

BEGIN
IF v_myage < 11
THEN

DBMS_OUTPUT.PUT_LINE(' I am a child ');
ELSE

DBMS_OUTPUT.PUT_LINE(' I am not a child ');
END IF;
END;

Examples continued:

Presenter
Presentation Notes
Instructor Note

Ask the students what would happen if you were to change

IF myage < 11

to

IF myage < 11 OR myage is NULL;

Answer: “I am a child” would print because the first condition would evaluate to TRUE because the value of myage is NULL.

55

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

When working with nulls, you can avoid some common mistakes by
keeping in mind the following rules:
• Simple comparisons involving nulls always yield NULL.
• Applying the logical operator NOT to a null yields NULL.
• In conditional control statements, if a condition yields NULL, it

behaves just like a FALSE, and the associated sequence of
statements is not executed.

• Consider the following example:
x := 5;
y := NULL;
...
IF x != y THEN -- yields NULL, not TRUE
-- sequence_of_statements that are not executed

END IF;
• You may expect the sequence of statements to execute because x

and y seem unequal. But, nulls are indeterminate. Whether or not
x is equal to y is unknown. Therefore, the IF condition yields NULL
and the sequence of statements is bypassed.

Handling Nulls

56

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

• You can perform actions selectively when a specific
condition is being met.

• When writing code, remember the spelling of the keywords:
– ELSIF is one word.
– END IF is two words.

• If the controlling Boolean condition is TRUE, then the
associated sequence of statements is executed; if the
controlling Boolean condition is FALSE or NULL, then the
associated sequence of statements is passed over. Any
number of ELSIF clauses is permitted.

• Indent the conditionally executed statements for clarity.

Guidelines for Using IF Statements

Copyright © 2009, Oracle. All rights reserved.

Conditional Control: CASE Statements

58

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

• A CASE expression selects a result and returns it into a
variable

• To select the result, the CASE expression uses expressions.
The value returned by these expressions is used to select
one of several alternatives.

variable_name :=
CASE selector
WHEN expression1 THEN result1
WHEN expression2 THEN result2
...
WHEN expressionN THEN resultN
[ELSE resultN+1]
END;

CASE Expressions

Presenter
Presentation Notes
CASE Expressions

A CASE expression returns a result based on one or more alternatives. To return the result, the CASE expression uses a selector—an expression whose value is used to return one of several alternatives. The selector is followed by one or more WHEN clauses, which are checked sequentially. The value of the selector determines which result is returned. If the value of the selector equals the value of a WHEN clause expression, then that WHEN clause is executed and that result is returned.

59

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

DECLARE
v_grade CHAR(1) := 'A';
v_appraisal VARCHAR2(20);

BEGIN
v_appraisal :=

CASE v_grade
WHEN 'A' THEN 'Excellent'
WHEN 'B' THEN 'Very Good'
WHEN 'C' THEN 'Good'
ELSE 'No such grade'

END;
DBMS_OUTPUT.PUT_LINE ('Grade: '|| v_grade ||

' Appraisal ' || v_appraisal);
END;

Grade: A
Appraisal Excellent

Statement processed.

Example:

Presenter
Presentation Notes
CASE Expressions: Example

In the example in the slide, the CASE expression uses the value in the grade variable as the expression. The CASE expression returns the value of the appraisal variable based on the value of the grade value.

Ask students what output would be produced if the grade variable were initialized to ‘C’ instead of ‘A’.

60

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

PL/SQL also provides a searched CASE expression. A searched CASE
expression has no selector. Also, its WHEN clauses contain search
conditions that yield a Boolean value, not expressions that can yield a
value of any type.

DECLARE
v_grade CHAR(1) := 'A';
v_appraisal VARCHAR2(20);

BEGIN
v_appraisal :=
CASE

WHEN v_grade = 'A' AND v_appraisal IS NULL
THEN 'Excellent'

WHEN v_grade IN ('B','C') THEN 'Good'
ELSE 'No such grade'

END;
DBMS_OUTPUT.PUT_LINE ('Grade: '|| v_grade ||

' Appraisal ' || v_appraisal);
END;

Examples continued

61

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

CASE Statement

DECLARE
v_deptid departments.department_id%TYPE;
v_deptname departments.department_name%TYPE;
v_emps NUMBER;
v_mngid departments.manager_id%TYPE := 108;

BEGIN
CASE v_mngid
WHEN 108 THEN
SELECT department_id, department_name
INTO v_deptid, v_deptname FROM departments
WHERE manager_id=108;

SELECT count(*) INTO v_emps FROM employees
WHERE department_id=v_deptid;

WHEN 200 THEN
...

END CASE;
DBMS_OUTPUT.PUT_LINE ('You are working in the '|| v_deptname||
' department. There are '||v_emps ||' employees in this
department');

END;

Examples continued

Presenter
Presentation Notes
CASE Statement

Remember the usage of the IF statement. You may include any number of PL/SQL statements in the THEN clause and also the ELSE clause. Similarly, you can include any number of statements in the CASE statement. The CASE statement is more readable compared to multiple IF and ELSIF statements.

62

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

• The CASE expression evaluates the condition and returns a
value.

• The CASE statement evaluates the condition and performs
an action.

• A CASE statement can be a complete PL/SQL block.
• CASE statements end with END CASE;.
• CASE expressions end with END;.

How Is the CASE Expression Different from the CASE
Statement?

63

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

When using IF and CASE statements we often need to combine
conditions using AND, OR and NOT. The following Logic Tables
show the results of all possible combinations of two conditions.

AND

TRUE

FALSE

NULL

TRUE FALSE NULL

TRUE

NULL NULL

NULL

FALSE FALSE

FALSE

FALSE

FALSE

NOT

TRUE

FALSE

NULL

FALSE

TRUE

NULL

TRUE

NULL

OR TRUE FALSE NULL

TRUE

TRUE

TRUE

TRUETRUE

FALSE

NULL NULL

NULLFALSE

Logic Tables

Presenter
Presentation Notes
Logic Tables

You can build a simple Boolean condition by combining number, character, or date expressions with comparison operators.

You can build a complex Boolean condition by combining simple Boolean conditions with the logical operators AND, OR, and NOT. The logical operators are used to check the Boolean variable values and return TRUE, FALSE, or NULL. In the logic tables shown in the slide:

FALSE takes precedence in an AND condition, and TRUE takes precedence in an OR condition

AND returns TRUE only if both of its operands are TRUE

OR returns FALSE only if both of its operands are FALSE

NULL AND TRUE always evaluates to NULL because it is not known whether the second operand evaluates to TRUE or not

Note: The negation of NULL (NOT NULL) results in a null value because null values are indeterminate.

64

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

What is the value of v_flag in each case?

V_REORDER_FLAG V_AVAILABLE_FLAG V_FLAG

TRUE TRUE

TRUE FALSE

NULL TRUE

NULL FALSE

v_flag := v_reorder_flag AND v_available_flag;

?

?

?

?

Boolean Conditions

Presenter
Presentation Notes
Boolean Conditions

The AND logic table can help you evaluate the possibilities for the Boolean condition in the slide.

Answers

1.	TRUE

2.	FALSE

3.	NULL

4.	FALSE

Copyright © 2009, Oracle. All rights reserved.

Iterative Control: Basic Loops

Presenter
Presentation Notes
Lesson Timing

What Will I Learn?		Xx		xx minutes

Why Learn It?		Xx		xx minutes

Tell Me/Show Me 		xx		xx minutes

Try It/Solve It		xx		xx minutes

Lesson Preparation

XXX

What to Watch For

XXX

Connections

XXX

66

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Loops repeat a statement or a sequence of statements multiple
times.
PL/SQL provides the following types of loops:
• Basic loops that perform repetitive actions without overall

conditions (Covered in this lesson.)
• FOR loops that perform iterative actions based on a counter
• WHILE loops that perform repetitive actions based on a

condition

LOOP Statements

67

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

The simplest form of a LOOP statement is the basic (or infinite)
loop, which encloses a sequence of statements between the
keywords LOOP and END LOOP. Use the basic loop when the
statements inside the loop must execute at least once.
Each time the flow of execution reaches the END LOOP
statement, control is returned to the corresponding LOOP
statement above it.
Without an EXIT statement, the loop would be infinite.

LOOP
statement1;
. . .
EXIT [WHEN condition];

END LOOP;

Basic Loops

68

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

DECLARE
v_countryid locations.country_id%TYPE := 'CA';
v_loc_id locations.location_id%TYPE;
v_counter NUMBER(2) := 1;
v_new_city locations.city%TYPE := 'Montreal';

BEGIN
SELECT MAX(location_id) INTO v_loc_id FROM locations

WHERE country_id = v_countryid;
LOOP

INSERT INTO locations(location_id, city, country_id)
VALUES((v_loc_id + v_counter), v_new_city, v_countryid);
v_counter := v_counter + 1;
EXIT WHEN v_counter > 3;

END LOOP;
END;

Example:

Presenter
Presentation Notes
Ask students what would happen if no EXIT statement were included. Answer: the loop would execute 99 times, inserting 99 rows into the table. The 100th iteration would try to increment the counter to 100 and cause an error because COUNTER is declared as NUMBER(2).

69

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

You can use the EXIT statement to terminate a loop. The
control passes to the next statement after the END LOOP
statement. You can issue EXIT either as an action within an
IF statement or as a stand-alone statement within the loop.

DECLARE
v_counter NUMBER := 1;

BEGIN
LOOP

DBMS_OUTPUT.PUT_LINE('The square of '
||v_counter||' is: '|| POWER(v_counter,2));

v_counter := v_counter + 1;
IF v_counter > 10 THEN

EXIT;
END IF;

END LOOP;
END;

The EXIT Statement

Presenter
Presentation Notes
The EXIT statement could have been written as

 EXIT WHEN v_counter > 10;

Students may not have seen the POWER function before.

70

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

The EXIT statement must be placed inside a loop.
• If the EXIT condition is placed at the top of the loop (before

any of the other executable statements) and that condition is
initially true, then the loop will exit and the statements will
never execute.

• A basic loop can contain multiple EXIT statements, but it is
recommended to have only one EXIT point.

The EXIT Statement continued

71

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

You can attach a WHEN clause to allow conditional termination of
the loop. When the EXIT statement is encountered, the condition
in the WHEN clause is evaluated. If the condition yields TRUE, then
the loop ends and control passes to the next statement after the
loop.

DECLARE
v_counter NUMBER := 1;

BEGIN
LOOP

DBMS_OUTPUT.PUT_LINE('The square of '
||v_counter||' is: '|| POWER(v_counter,2));

v_counter :=v_counter + 1;
EXIT WHEN v_counter > 10;

END LOOP;
END;

The EXIT WHEN Statement

Copyright © 2009, Oracle. All rights reserved.

Iterative Control: WHILE and FOR Loops

73

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

You can use the WHILE loop to repeat a sequence of statements
until the controlling condition is no longer TRUE. The condition is
evaluated at the start of each iteration. The loop terminates when
the condition is FALSE or NULL. If the condition is FALSE or NULL
at the start of the loop, then no further iterations are performed.

• In the syntax:
– condition Is a Boolean variable or expression (TRUE, FALSE, or

NULL)
– statement Can be one or more PL/SQL or SQL statements

WHILE condition LOOP
statement1;
statement2;

END LOOP;

WHILE Loops

74

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

If the variables involved in the conditions do not change, then the
condition remains TRUE and the loop does not terminate. If the
condition yields NULL, then the loop is bypassed and the control
passes to the next statement.
Example:
DECLARE
v_countryid locations.country_id%TYPE := 'CA';
v_loc_id locations.location_id%TYPE;
v_new_city locations.city%TYPE := 'Montreal';
v_counter NUMBER := 1;

BEGIN
SELECT MAX(location_id) INTO v_loc_id FROM locations

WHERE country_id = v_countryid;
WHILE v_counter <= 3 LOOP

INSERT INTO locations(location_id, city, country_id)
VALUES((v_loc_id + v_counter), v_new_city, v_countryid);
v_counter := v_counter + 1;

END LOOP;
END;

WHILE Loops continued

75

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

FOR loops have the same general structure as the basic loop. In
addition, they have a control statement before the LOOP keyword
to set the number of iterations that PL/SQL performs.

• Use a FOR loop to shortcut the test for the number of
iterations.

• Do not declare the counter; it is declared implicitly.
• lower_bound .. upper_bound is the required syntax.

FOR counter IN[REVERSE]lower_bound..upper_bound LOOP
statement1;
statement2;
. . .

END LOOP;

FOR Loops

76

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

• In the syntax:
– counter Is an

implicitly declared integer whose value automatically increases
or decreases (decreases if the REVERSE keyword is used) by 1
on each iteration of the loop until the upper or lower bound is
reached

– REVERSE Causes the counter to decrement with each
iteration from the upper bound to the lower bound (Note that
the lower bound is still referenced first.)

– lower_bound Specifies the lower bound for the range of
counter values

– upper_bound Specifies the upper bound for the range of
counter values

• Do not declare the counter; it is declared implicitly as an
integer.

FOR Loops continued

77

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

• Note: The sequence of statements is executed each time
the counter is incremented, as determined by the two
bounds. The lower bound and upper bound of the loop
range can be literals, variables, or expressions, but must
evaluate to integers. The bounds are rounded to integers—
that is, 11/3 or 8/5 are valid upper or lower bounds. The
lower bound and upper bound are inclusive in the loop
range. If the lower bound of the loop range evaluates to a
larger integer than the upper bound, then the sequence of
statements will not be executed.

For example, the following statement is executed only once:

FOR i in 3..3
LOOP
statement1;

END LOOP;

FOR Loops (continued)

78

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

You have already learned how to insert three new locations for
the country code CA and the city Montreal. The example in this
slide shows you the same results as shown in the LOOP and the
WHILE loop examples.

DECLARE
v_countryid locations.country_id%TYPE := 'CA';
v_loc_id locations.location_id%TYPE;
v_new_city locations.city%TYPE := 'Montreal';

BEGIN
SELECT MAX(location_id) INTO v_loc_id

FROM locations
WHERE country_id = v_countryid;

FOR i IN 1..3 LOOP
INSERT INTO locations(location_id, city, country_id)
VALUES((v_loc_id + i), v_new_city, v_countryid);

END LOOP;
END;

FOR Loops (continued)

79

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

• Reference the counter within the loop only; it is undefined
outside the loop.

• Do not reference the counter as the target of an assignment.
• Neither loop bound should be NULL.
• When writing a FOR loop, the lower and upper bounds of a

LOOP statement do not need to be numeric literals. They can
be expressions that convert to numeric values.

DECLARE
v_lower NUMBER := 1;
v_upper NUMBER := 100;

BEGIN
FOR i IN v_lower..v_upper LOOP
...
END LOOP;

END;

Example:

FOR Loop Guidelines

Presenter
Presentation Notes
The scope of the counter is automatically restricted to the loop alone.

80

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

• Use the basic loop when the statements inside the loop must
execute at least once.

• Use the WHILE loop if the condition has to be evaluated at
the start of each iteration.

• Use a FOR loop if the number of iterations is known.

Guidelines For Using Loops

Presenter
Presentation Notes
Guidelines While Using Loops

A basic loop allows the execution of its statement at least once, even if the condition is already met upon entering the loop. Without the EXIT statement, the loop would be infinite.

You can use the WHILE loop to repeat a sequence of statements until the controlling condition is no longer TRUE. The condition is evaluated at the start of each iteration. The loop terminates when the condition is FALSE. If the condition is FALSE at the start of the loop, then no further iterations are performed.

FOR loops have a control statement before the LOOP keyword to determine the number of iterations that PL/SQL performs. Use a FOR loop if the number of iterations is predetermined.

Copyright © 2009, Oracle. All rights reserved.

Iterative Control: Nested Loops

82

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

In PL/SQL, you can nest loops to multiple levels. You can nest
FOR, WHILE, and basic loops within one another. The nested loop
does not have to be the same type as the outer loop.
Example:

BEGIN
FOR v_outerloop in 1..3 LOOP

FOR v_innerloop in REVERSE 1..5 LOOP
DBMS_OUTPUT.PUT_LINE('Outer loop is:'||v_outerloop||

'and inner loop is: '||v_innerloop);
END LOOP;

END LOOP;
END;

Nested Loops

Presenter
Presentation Notes
Consider entering and executing this block so that students can clearly see the successive iterations.

83

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

This example contains EXIT conditions in nested basic loops.

What if we want to exit from the outer loop at step A?

DECLARE
v_outer_done CHAR(3) := 'NO';
v_inner_done CHAR(3) := 'NO';

BEGIN
LOOP -- outer loop

...
LOOP -- inner loop

...

... -- step A
EXIT WHEN v_inner_done = 'YES';
...

END LOOP;
...
EXIT WHEN v_outer_done = 'YES';
...

END LOOP;
END;

Nested Loops continued

Presenter
Presentation Notes
Explain that when INNER_DONE = ‘YES’, PL/SQL exits the inner loop but the outer loop continues executing. What if we want to exit the outer loop (ie both loops) while still within the inner loop?

84

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Use labels to distinguish between the loops:
DECLARE
...
BEGIN
<<outer_loop>>
LOOP -- outer loop

...
<<inner_loop>>
LOOP -- inner loop
EXIT outer_loop when ... -- Exits both loops
EXIT WHEN inner_done = 'YES';
...
END LOOP inner_loop;

...
EXIT WHEN outer_done = 'YES';
...

END LOOP outer_loop;
END;

Nested Loops continued

Presenter
Presentation Notes
Loop labels can help to improve readability even when they are not needed. But they are needed only if we want to exit an outer loop from within an inner loop.

85

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Loop label names follow the same rules as other identifiers. A
label is placed before a statement, either on the same line or on a
separate line. In FOR or WHILE loops, place the label before FOR
or WHILE within label delimiters (<<label>>). If the loop is
labeled, the label name can optionally be included after the END
LOOP statement for clarity.

Guidelines for Loop Labels

Copyright © 2009, Oracle. All rights reserved.

Introduction to Explicit Cursors

87

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

The Oracle server allocates a private memory area called a
context area to store the data processed by a SQL statement.

Every context area (and therefore every SQL statement) has a
cursor associated with it. You can think of a cursor either as a
label for the context area, .

DML statements and single-row SELECT statements use an
implicit cursor called SQL.

To SELECT more than one row, you must declare and use an
explicit cursor.

Context Areas and Cursors

88

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

With an explicit cursor, you can retrieve multiple rows from a
database table, have a pointer to each row that is retrieved, and
work on the rows one at a time.

The following are some reasons to use an explicit cursor:

• It is the only way in PL/SQL to retrieve more than one row
from a table.

• Each row is fetched by a separate program statement, giving
the programmer more control over the processing of the
rows.

Explicit Cursors continued

89

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

DECLARE
CURSOR wf_holiday_cursor IS
SELECT country_name, national_holiday_date
FROM wf_countries WHERE region_id=30;
v_country_name wf_countries.country_name%TYPE;
v_holiday wf_countries.national_holiday_date%TYPE;

BEGIN
OPEN wf_holiday_cursor;
LOOP

FETCH wf_holiday_cursor INTO v_country_name, v_holiday;
DBMS_OUTPUT.PUT_LINE(v_country_name||' '||v_holiday);
-- perform action on data here
EXIT when wf_holiday_cursor%NOTFOUND;

END LOOP;
CLOSE wf_holiday_cursor;

END;

Example:

Presenter
Presentation Notes
Instructor Note

Although this example prints the values, you may need to do something else with this data, such as insert it into a table, convert it from VARCHAR2 to DATE format, and so on.

90

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

The set of rows returned by a multiple-row query is called the
active set. Its size is the number of rows that meet your search
criteria. The following illustration shows how an explicit cursor
“points” to the current row in the active set. This enables your
program to process the rows one at a time.

Active set

Table

Explicit Cursor
100 King AD_PRES

101 Kochhar AD_VP

102 De Haan AD_VP

139 Seo ST_CLERK

Explicit Cursor Operations

Presenter
Presentation Notes
A note of clarification: There are three related things all called “cursors.” The initial statement that goes in the DECLARE section is called a cursor (or a statement), the rows that are returned is the CURrent Set Of Rows or cursor (or active set), and the pointer positioned into the active set is also called a cursor (or pointer). It would be correct (but confusing) to say, “The cursor is declared and opened and is loaded with the cursor, and then the cursor is positioned at the top of the cursor. Fetch until the cursor gets to the bottom of the cursor then close the cursor.” It would be less correct (but much clearer) to say, “The statement is declared and opened and is loaded with the current set of rows, and then the pointer is positioned at the top of the current set of rows. Fetch until the pointer gets to the bottom of the current set of rows, then close the statement.”

Let’s not even mention that the blinky thing where you are about to type is also called a cursor!

91

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

• Retrieve
the
current
row into
variables

FETCH

• Test for
existing
rows.

EMPTY?

• Return to
FETCH if
rows are
found.

No

• Release the
active set.

CLOSEYes

• Name an
active set

DECLARE

• Fill the
active set
with data

OPEN

Controlling Explicit Cursors

Presenter
Presentation Notes
Controlling Explicit Cursors

Now that you have a conceptual understanding of cursors, review the steps to use them:

1. 	Declare the cursor in the declarative section of a PL/SQL block by naming it and defining the structure of the query to be associated with it.

2. 	Open the cursor. The OPEN statement executes the query and binds any variables that are referenced. Rows identified by the query are called the active set and are now available for fetching.

3. 	Fetch data from the cursor. In the flow diagram shown in the slide, after each fetch, you test the cursor for any existing row. If there are no more rows to process, then you must close the cursor.

4. 	Close the cursor. The CLOSE statement releases the active set of rows. It is now possible to reopen the cursor to establish a fresh active set.

92

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Fetch each row,
one at a time.

Close the cursor.

Cursor
pointer

Open the cursor.1

2

3

Cursor
pointer

Cursor
pointer

Controlling Explicit Cursors continued

Presenter
Presentation Notes
Controlling Explicit Cursors (continued)

A PL/SQL program opens a cursor, processes rows returned by a query, and then closes the cursor. The cursor marks the current position in the active set.

1.	The OPEN statement executes the query associated with the cursor, identifies the active set, and positions the cursor to the first row.

2.	The FETCH statement retrieves the current row and advances the cursor to the next �row either until there are no more rows or until a specified condition is met.

3.	The CLOSE statement releases the cursor.

93

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

The active set of a cursor is defined by the SELECT statement
in the cursor declaration.

DECLARE
CURSOR emp_cursor IS
SELECT employee_id, last_name FROM employees
WHERE department_id =30;

The second example shows that a cursor declaration can include
joins, group functions and subqueries. It can also include an
ORDER BY clause, although that is not shown here.

DECLARE
CURSOR dept_emp_cursor IS
SELECT department_name, COUNT(*) AS how_many
FROM departments d, employees e

WHERE d.department_id = e.department_id
GROUP BY d.department_name
HAVING COUNT(*) > 1;

...

Declaring the Cursor

Presenter
Presentation Notes
Declaring the Cursor

It is mandatory to have an INTO clause for a SELECT statement in PL/SQL. However, note that the SELECT statement in the cursor declaration cannot have an INTO clause. That is because you are only defining a cursor in the declarative section and not retrieving any rows into the cursor.

94

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

• Do not include the INTO clause in the cursor declaration
because it appears later in the FETCH statement.

• If processing rows in a specific sequence is required, then
use the ORDER BY clause in the query.

• The cursor can be any valid SELECT statement, including
joins, subqueries, and so on.

Guidelines for Declaring the Cursor

95

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

The OPEN statement executes the query associated with the
cursor, identifies the active set, and positions the cursor pointer
to the first row. The OPEN statement is included in the executable
section of the PL/SQL block.

DECLARE
CURSOR emp_cursor IS
SELECT employee_id, last_name FROM employees
WHERE department_id =30;

...
BEGIN
OPEN emp_cursor;
…

Opening the Cursor

96

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

• OPEN is an executable statement that performs the following
operations:

1. Dynamically allocates memory for a context area

2. Executes the SELECT statement in the cursor declaration,
returning the results into the active set (fills the box with data)

3. Positions the pointer to the first row in the active set.

Opening the Cursor continued

97

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

The FETCH statement retrieves the rows from the cursor one at a
time. After each fetch, the cursor advances to the next row in the
active set. You use the %NOTFOUND attribute to check whether
the entire active set has been retrieved.

DECLARE
CURSOR emp_cursor IS

SELECT employee_id, last_name FROM employees
WHERE department_id =50;

v_empno employees.employee_id%TYPE;
v_lname employees.last_name%TYPE;

BEGIN
OPEN emp_cursor;
LOOP

FETCH emp_cursor INTO v_empno, v_lname;
EXIT WHEN emp_cursor%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(v_empno ||' '||v_lname);

END LOOP; …
END;

124 Mourgos
141 Rajs
142 Davies
143 Matos
144 Vargas

Statement processed.

Fetching Data from the Cursor

98

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

• Include the same number of variables in the INTO clause of
the FETCH statement as columns in the SELECT statement,
and be sure that the data types are compatible.

• Match each variable to correspond to the columns
positionally.

• Test to see whether the cursor contains rows. If a fetch
acquires no values, then there are no rows left to process in
the active set and no error is recorded.

Guidelines for Fetching Data from the Cursor

99

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

The CLOSE statement disables the cursor, releases the context
area, and undefines the active set. Close the cursor after
completing the processing of the FETCH statement. You can
reopen the cursor if required.

...
LOOP
FETCH emp_cursor INTO v_empno, v_lname;
EXIT WHEN emp_cursor%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(v_empno ||' '||v_lname);

END LOOP;
CLOSE emp_cursor;

END;

Closing the Cursor

100

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

• A cursor can be reopened only if it is closed. If you attempt
to fetch data from a cursor after it has been closed, then an
INVALID_CURSOR exception will be raised.

• If we later reopen the cursor, the associated SELECT
statement is re-executed to re-populate the context area with
the most recent data from the database.

Guidelines for Closing the Cursor

Copyright © 2009, Oracle. All rights reserved.

Using Explicit Cursor Attributes

102

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Notice the difference between the two blocks of code. The code
on the left uses hard-coded variables for each column selected in
the cursor. The code on the right uses a RECORD for each
column selected in the cursor. Records are convenient for
processing the rows of the active set because you can simply
fetch into the record.

DECLARE
CURSOR emp_cursor IS
SELECT employee_id, last_name

FROM employees
WHERE department_id =30;

v_emp_id NUMBER;
v_last_name VARCHAR2(25);

BEGIN
OPEN emp_cursor;
LOOP

FETCH emp_cursor
INTO v_emp_id, v_last_name;

...

DECLARE
CURSOR emp_cursor IS
SELECT employee_id, last_name

FROM employees
WHERE department_id =30;

v_emp_record
emp_cursor%ROWTYPE;

BEGIN
OPEN emp_cursor;
LOOP

FETCH emp_cursor
INTO v_emp_record;

...

Cursors and Records

Presenter
Presentation Notes
v_last_name could have been declared as employees.last_name%TYPE;

Students will learn more about PL/SQL records later in the course.

103

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

These attributes are identical to those used with an implicit
cursor. When appended to the cursor variable name, these
attributes return useful information about the execution of a
cursor manipulation statement.

Evaluates to the total number of rows
FETCHed so far

Evaluates to TRUE if the most recent fetch
returns a row; opposite of %NOTFOUND

Evaluates to TRUE if the most recent fetch
does not return a row

Evaluates to TRUE if the cursor is open
Description

Boolean%FOUND

Number%ROWCOUNT

Boolean%NOTFOUND

Boolean%ISOPEN

TypeAttribute

Explicit Cursor Attributes

Presenter
Presentation Notes
Instructor Note

Appending example: mycur%FOUND, or mycur%ROWCOUNT (as opposed to the implicit SQL%FOUND or SQL%ROWCOUNT).

The %ISOPEN attribute does not exist for implicit cursors.

Notice mycur%ROWCOUNT is rows so far (always starts at zero) versus SQL%ROWCOUNT is total rows.

104

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

You can fetch rows only when the cursor is open. Use the
%ISOPEN cursor attribute before performing a fetch to test
whether the cursor is open.

%ISOPEN returns the status of the cursor: TRUE if open and
FALSE if not.

IF NOT emp_cursor%ISOPEN THEN
OPEN emp_cursor;

END IF;
LOOP
FETCH emp_cursor...

%ISOPEN Attribute

Presenter
Presentation Notes
%ISOPEN is useful in blocks where we may OPEN and CLOSE the cursor conditionally. For example:

…

IF some_condition THEN OPEN cursor_name;

END IF;

-- Maybe the cursor is open now, maybe not

…

-- Now we must have an open cursor whatever, so:

IF NOT cursor_name%ISOPEN THEN

 OPEN cursor_name;

105

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Usually the %ROWCOUNT and %NOTFOUND attributes are used in
a loop to determine when to exit the loop.
Use the %ROWCOUNT cursor attribute for the following:
• To process an exact number of rows
• To count the number of rows fetched so far in a loop and/or

determine when to exit the loop
Use the %NOTFOUND cursor attribute for the following:
• To determine whether the query found any rows matching

your criteria
• To determine when to exit the loop

%ROWCOUNT and %NOTFOUND Attributes

106

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

This example shows how %ROWCOUNT and %NOTFOUND
attributes can be used for exit conditions in a loop.

DECLARE
CURSOR emp_cursor IS

SELECT employee_id, last_name FROM employees;
v_emp_record emp_cursor%ROWTYPE;

BEGIN
OPEN emp_cursor;
LOOP
FETCH emp_cursor INTO v_emp_record;
EXIT WHEN emp_cursor%ROWCOUNT > 10 OR emp_cursor%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(v_emp_record.employee_id

||' '|| v_emp_record.last_name);
END LOOP;
CLOSE emp_cursor;

END ;

Example of %ROWCOUNT and %NOTFOUND

107

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

You cannot use an explicit cursor attribute directly in a SQL
statement. The following code will return an error:

DECLARE
CURSOR emp_cursor IS

SELECT employee_id, salary FROM employees
ORDER BY SALARY DESC;

v_emp_record emp_cursor%ROWTYPE;
v_count NUMBER;

BEGIN
OPEN emp_cursor;
LOOP
FETCH emp_cursor INTO v_emp_record;
EXIT WHEN emp_cursor%NOTFOUND;
INSERT INTO top_paid_emps
(employee_id, rank, salary)
VALUES
(v_emp_record.employee_id, emp_cursor%ROWCOUNT,
v_emp_record.salary);

...

Explicit Cursor Attributes in SQL Statements

Presenter
Presentation Notes
Instead, we would copy the cursor attribute value to a separate variable, then use this variable in the SQL statement:

DECLARE

 CURSOR emp_cursor IS ...;

 v_emp_record emp_cursor%ROWTYPE;

 v_count NUMBER;

 v_rowcount NUMBER;

BEGIN

 OPEN emp_cursor;

 LOOP

 FETCH emp_cursor INTO v_emp_record;

 EXIT WHEN emp_cursor%NOTFOUND;

 v_rowcount := emp_cursor%ROWCOUNT;

INSERT INTO top_paid_emps

(employee_id, rank, salary)

VALUES (v_emp_record.employee_id, v_rowcount, v_emp_record.salary)

Copyright © 2009, Oracle. All rights reserved.

Cursor FOR Loops

109

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

A cursor FOR loop processes rows in an explicit cursor. The
cursor is opened, a row is fetched once for each iteration in the
loop, the loop is terminated automatically when the last row is
processed, and the cursor is closed automatically.

DECLARE
CURSOR emp_cursor IS

SELECT employee_id, last_name FROM employees
WHERE department_id =50;

BEGIN
FOR v_emp_record IN emp_cursor

LOOP
DBMS_OUTPUT.PUT_LINE(v_emp_record.employee_id

|| ' ' ||v_emp_record.last_name);
END LOOP;

END;

Cursor FOR Loops

110

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Compare this code to the previous slide. The two forms of the code are
logically identical to each other and produce exactly the same results.

DECLARE
CURSOR emp_cursor IS

SELECT employee_id,last_name
FROM employees
WHERE department_id =30;

v_emp_record emp_cursor%ROWTYPE;
BEGIN

OPEN emp_cursor;
LOOP

FETCH emp_cursor INTO v_emp_record;
EXIT WHEN emp_cursor%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(…);

END LOOP;
CLOSE emp_cursor;

END;

Cursor FOR Loops continued

Presenter
Presentation Notes
So why wouldn’t you want to do this all the time? Because maybe you don’t want to process all the rows, but only the first 10, or the last half, or until running total salary=1 million, or until Tuesday, or you want to leave the cursor open until later, or anything that requires more conditional fine-tuning and not a complete set of rows.

Having said that, this form shown on the left is the way you do it most of the time.

111

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

• Do not declare the record that controls the loop
because it is declared implicitly.

• The scope of the implicit record is restricted to the
loop, so you cannot reference the record outside the
loop.

• You can access fetched data by
record_name.column_name.

Guidelines for Cursor FOR Loops

Presenter
Presentation Notes
The scope rule is the same as for i in 1..10 loop … end loop; where “i” has no definition outside of the loop.

112

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

We can still test cursor attributes such as %ROWCOUNT.

Example:

DECLARE
CURSOR emp_cursor IS
SELECT employee_id, last_name
FROM employees
WHERE department_id =50;

BEGIN
FOR v_emp_record IN emp_cursor
LOOP
EXIT WHEN emp_cursor%ROWCOUNT > 5;
DBMS_OUTPUT.PUT_LINE(v_emp_record.employee_id

|| ' ' ||v_emp_record.last_name);
END LOOP;

END;

Testing Cursor Attributes

Presenter
Presentation Notes
(Nitpicky point: Some programmers consider an EXIT from inside a FOR LOOP to be poor form…like a GOTO. It works okay, but FOR usually implies all of the rows. Also, you could change the cursor to read SELECT … WHERE … AND ROWNUM<6; added to the last clause, thus eliminating the EXIT WHEN. Filter before you get to the loop.)

113

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

We don’t have to declare the cursor at all! Instead, we can
specify the SELECT on which the cursor is based directly in the
FOR loop.
The advantage of this is that all the cursor definition is contained
in a single FOR … statement. This makes later changes to the
code much easier and quicker.

BEGIN
FOR v_emp_record IN (SELECT employee_id, last_name

FROM employees WHERE department_id =50)
LOOP
DBMS_OUTPUT.PUT_LINE(v_emp_record.employee_id

||' '||v_emp_record.last_name);
END LOOP;

END;

Cursor FOR Loops Using Subqueries

Presenter
Presentation Notes
Cursor FOR Loops Using Subqueries

 Ask students to imagine a much bigger program with several hundred lines of PL/SQL code, maybe including many cursor declarations.

Copyright © 2009, Oracle. All rights reserved.

Cursors with Parameters

115

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

You can pass parameters to a cursor when the cursor is opened.
This means that you can open and close an explicit cursor
several times in a block, or in different executions of the same
block, returning a different active set on each occasion.

DECLARE
CURSOR c_emp (p_dept_id NUMBER) IS
SELECT first_name, last_name

FROM employees
WHERE department_id = p_dept_id;

v_emp_record c_emp%ROWTYPE;
BEGIN

OPEN c_emp (10);
LOOP

FETCH c_emp INTO v_emp_record;
EXIT WHEN c_emp%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(v_emp_record.first_name || ' '

|| v_emp_record.last_name);
END LOOP;
CLOSE c_emp;

END;

Change to whichever
department is required.

Cursors with Parameters

116

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Each parameter named in the cursor declaration must have a
corresponding value in the OPEN statement. Parameter data
types are the same as those for scalar variables, but you do not
give them sizes. The parameter names are used in the WHERE
clause of the cursor SELECT statement.

Defining Cursors with Parameters

Presenter
Presentation Notes
For instance, in a regular DECLARE, simply “myvar NUMBER;” implies NUMBER(38,0) which is plenty big but won’t allow decimals. But here “(myparm NUMBER)” would allow decimals.

Similarly, in a regular DECLARE, simply “myvar VARCHAR2;” implies VARCHAR2(1) which is usually way too small. But here “(myparm VARCHAR2)” would allow anywhere from 1 to 4096 characters.

When we do procedures and functions later, their parameters work the same way: unsized.

117

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

DECLARE
CURSOR emp_cursor (p_deptno NUMBER) IS
SELECT employee_id, last_name
FROM employees
WHERE department_id = p_deptno;

BEGIN
OPEN emp_cursor (10);
...
CLOSE emp_cursor;
OPEN emp_cursor (20);
...

Open the cursor and
return different active sets.

DECLARE
CURSOR emp_cursor (p_deptno NUMBER) IS
SELECT employee_id, last_name
FROM employees
WHERE department_id = p_deptno;

BEGIN
FOR v_emp_record IN emp_cursor(10) LOOP
….
END LOOP;

END;

Examples:

Presenter
Presentation Notes
Must close it before re-opening it.

118

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

DECLARE
v_deptid employees.department_id%TYPE;
CURSOR empcur (p_deptid NUMBER) IS

SELECT employee_id, salary
FROM my_employees
WHERE department_id = p_deptid;

v_emp_rec empcur%ROWTYPE;
BEGIN
SELECT MAX(department_id) INTO v_deptid

FROM my_employees;
OPEN empcur(v_deptid);
LOOP

FETCH empcur INTO v_emp_rec;
EXIT WHEN empcur%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(v_emp_rec.employee_id

|| ' ' || v_emp_rec.salary);
END LOOP;
CLOSE empcur;
END;

Example:

Presenter
Presentation Notes
Example of Cursor with Parameters

The purpose of this code is to update the salaries of all employees having a salary less than 20,000 in the department with the highest ID. Note that the maximum department_id is stored in the v_deptid variable and is then passed into the empcur cursor. Note the optional COMMIT is outside the loop.

119

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

In the following example, a cursor is declared and
is called with two parameters:

DECLARE
CURSOR emp_cursor2 (p_deptno NUMBER,

p_job VARCHAR2) IS
SELECT employee_id, last_name
FROM employees
WHERE department_id = p_deptno
AND job_id = p_job;

BEGIN
FOR v_emp_record IN emp_cursor2(10, 'Sales') LOOP
… ;
END LOOP;

END;

Cursors with Multiple Parameters

Presenter
Presentation Notes

Copyright © 2009, Oracle. All rights reserved.

Using Cursors for Update

121

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

When we declare a cursor FOR UPDATE, each row is locked as
we FETCH it. This prevents other users from modifying the rows
while our cursor is open. This does not prevent other users from
reading the rows.

• In the syntax:
– column_reference Is a column in the table against which

the query is performed (A list of columns may also be used.)
– NOWAIT Returns an Oracle server error if any of the rows are

locked by another session. If you omit the NOWAIT keyword,
then the Oracle server waits indefinitely until all the rows are
available.

– WAIT n Specify the number of seconds n to wait and check
whether the rows are unlocked. If the rows are still locked then
an error is returned.

CURSOR cursor_name IS SELECT ... FROM ...
FOR UPDATE [OF column_reference][NOWAIT | WAIT n];

Declaring a Cursor with the FOR UPDATE Clause

Presenter
Presentation Notes
From a business practice standpoint, some websites do this and other sites don’t. For instance, in the US, sites like TicketMaster® allow you to look at venue seats that are available for a concert and decide whether you want this one or that one. While you are thinking, the seats are held (table rows locked) for some few minutes. No one can get the seats while you are thinking about it. On the other hand, some discount airlines also let you see seats available at that instant, but by the time you say, “Buy it,” it has already been sold and the transaction comes back failing with, “That seat has been sold.”

122

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

If the cursor is based on a join of two tables, we may want to lock
the rows of one table but not the other. To do this, we specify
any column of the one table we want to lock.
Example:

DECLARE
CURSOR emp_cursor IS
SELECT e.employee_id, d.department_name
FROM employees e, departments d
WHERE e.department_id = d.department_id
AND department_id = 80 FOR UPDATE OF salary;

...

FOR UPDATE OF column-name

Presenter
Presentation Notes
If we don’t specify a column-name, then rows from both the employees AND the departments tables are locked. This causes unnecessary extra locking when (in this example) we want to lock only the EMPLOYEES rows, and only rows where dept=80 at that.

123

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

The WHERE CURRENT OF clause in an UPDATE or DELETE
statement is used in conjunction with the FOR UPDATE clause to
refer to the current row in an explicit cursor.

cursor Is the name of a declared cursor (The cursor must
have been declared with the FOR UPDATE clause.)

This enables you to apply updates and/or deletes to the most
recently FETCHed row.

WHERE CURRENT OF cursor-name ;

WHERE CURRENT OF Clause

Presenter
Presentation Notes
Note FOR UPDATE might actually be used for doing a DELETE or doing nothing, yet it is still called “FOR UPDATE.”

124

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

NOWAIT, FOR UPDATE, and WHERE CURRENT OF Clauses
DECLARE
v_deptid employees.department_id%TYPE;
CURSOR empcur (p_deptid NUMBER) IS

SELECT employee_id, salary
FROM my_employees
WHERE salary <= 20000
AND department_id = p_deptid
FOR UPDATE OF salary NOWAIT;

v_emp_rec empcur%ROWTYPE;
BEGIN
SELECT max(department_id) INTO v_deptid

FROM my_employees;
OPEN empcur(v_deptid);
LOOP

FETCH empcur INTO v_emp_rec;
EXIT WHEN empcur%NOTFOUND;
UPDATE my_employees

SET salary = v_emp_rec.salary*1.1
WHERE CURRENT OF empcur;

END LOOP;
CLOSE empcur;
COMMIT;
END;

Example:

Presenter
Presentation Notes
This example happens to use a parameter (explained in the previous lesson).

In this example, we don’t need to name a column in the FOR UPDATE clause because the cursor is not based on a join.

Copyright © 2009, Oracle. All rights reserved.

Using Multiple Cursors

126

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

We need to produce a report which lists each department as a
sub-heading, immediately followed by a listing of the employees
in that department … followed by the next department, and so on.

Notice the second cursor contains a parameter so that each time
it is opened it only contains employees of the referenced
department.

Sample Problem 1

127

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

DECLARE
CURSOR c_dept IS SELECT department_id,department_name

FROM departments ORDER BY department_name;
CURSOR c_emp (p_deptid NUMBER) IS SELECT first_name, last_name

FROM employees
WHERE department_id = p_deptid ORDER BY last_name;

v_deptrec c_dept%ROWTYPE;
v_emprec c_emp%ROWTYPE;

BEGIN
OPEN c_dept;
LOOP
FETCH c_dept INTO v_deptrec;
EXIT WHEN c_dept%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(v_deptrec.department_name);
OPEN c_emp (v_deptrec.department_id);
LOOP
FETCH c_emp INTO v_emprec;
EXIT WHEN c_emp%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(v_emprec.last_name || ' ' ||

v_emprec.first_name);
END LOOP;
CLOSE c_emp;

END LOOP;
CLOSE c_dept;

END;

Sample Problem 1 Cont

Presenter
Presentation Notes
Go through this carefully with the students. The inner C_EMP loop executes once for each row fetched by the C_DEPT cursor, and fetches a different subset of EMPLOYEES each time.

128

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

We need to produce a report which lists each location in which
our departments are situated, followed by the departments in that
location.

Sample Problem 2

Presenter
Presentation Notes
Point out that in these multilevel reports, the tables will usually be related to each other by a foreign key.

129

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

DECLARE
CURSOR c_loc IS SELECT * FROM locations;
CURSOR c_dept (p_locid NUMBER) IS

SELECT * FROM departments WHERE location_id = p_locid;
v_locrec c_loc%ROWTYPE;
v_deptrec c_dept%ROWTYPE;

BEGIN
OPEN c_loc;
LOOP

FETCH c_loc INTO v_locrec;
EXIT WHEN c_loc%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(v_locrec.city);
OPEN c_dept (v_locrec.location_id);
LOOP

FETCH c_dept INTO v_deptrec;
EXIT WHEN c_dept%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(v_deptrec.department_name);

END LOOP;
CLOSE c_dept;

END LOOP;
CLOSE c_loc;

END;

Sample Problem 2 Cont

Presenter
Presentation Notes
Go through this carefully with the students. The inner C_DEPT loop executes once for each row fetched by the C_LOC cursor, and fetches a different subset of DEPARTMENTS each time.

130

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

DECLARE
CURSOR c_loc IS SELECT * FROM locations;
CURSOR c_dept (p_locid NUMBER) IS

SELECT * FROM departments WHERE location_id = p_locid;
BEGIN
FOR v_locrec IN c_loc
LOOP

DBMS_OUTPUT.PUT_LINE(v_locrec.city);
FOR v_deptrec IN c_dept (v_locrec.location_id)
LOOP

DBMS_OUTPUT.PUT_LINE(v_deptrec.department_name);
END LOOP;

END LOOP;
END;

We can use FOR loops (and other cursor techniques such as
FOR UPDATE) with multiple cursors, just as we can with single
cursors.

Using FOR Loops with Multiple Cursors

Presenter
Presentation Notes
Point out that this code is functionally identical to that in the previous slide, but is much more compact and easier to maintain.

	Scope of Exceptions in Nested Blocks
	Trapping Exceptions with a Handler�
	Handling Exceptions in an Inner Block�
	Propagating Exceptions to an Outer Block�
	Propagating Exceptions to an Outer Block continued
	Propagating Exceptions in a Subblock
	Good Programming Practices
	Good Programming Practices�
	Good Programming Practices continued�
	Good Programming Practices continued
	Good Programming Practices continued
	Good Programming Practices continued �
	Review of SQL DML
	Data Manipulation Language (DML)�
	INSERT �
	UPDATE�
	DELETE
	MERGE�
	MERGE�
	Retrieving Data in PL/SQL
	SQL Statements in PL/SQL
	SQL Statements in PL/SQL�
	SELECT Statements in PL/SQL�
	SELECT Statements in PL/SQL continued
	SELECT Statements in PL/SQL continued
	Guidelines for Retrieving Data in PL/SQL�
	Guidelines for Naming Conventions�
	Guidelines for Naming Conventions continued�
	Guidelines for Naming Conventions continued�
	Manipulating Data in PL/SQL
	Manipulating Data Using PL/SQL�
	Manipulating Data Using PL/SQL (continued)�
	Inserting Data�
	Deleting Data�
	Getting information from a Cursor
	What is a Cursor?�
	Cursor Attributes for Implicit Cursors
	Example using Cursor attributes:�
	Using Transaction Control Statements
	Database Transaction�
	Example of a Transaction continued
	Example of a Transaction (continued)
	Example of a Transaction
	Transaction Control Statements
	COMMIT is used to make the database changes permanent.
	SAVEPOINT is used to mark an intermediate point in transaction processing. �
	Conditional Control: IF Statements
	Controlling the Flow of Execution
	CASE Statements
	IF Statements
	IF Statements continued�
	Examples:�
	Examples continued:�
	Examples continued:
	Handling Nulls�
	Guidelines for Using IF Statements�
	Conditional Control: CASE Statements
	CASE Expressions�
	Example:�
	Examples continued�
	Examples continued �
	How Is the CASE Expression Different from the CASE Statement?�
	Logic Tables
	Boolean Conditions
	Iterative Control: Basic Loops
	LOOP Statements
	Basic Loops
	Example:
	The EXIT Statement
	The EXIT Statement continued
	The EXIT WHEN Statement
	Iterative Control: WHILE and FOR Loops
	WHILE Loops
	WHILE Loops continued�
	FOR Loops
	FOR Loops continued
	FOR Loops (continued)�
	FOR Loops (continued)�
	FOR Loop Guidelines
	Guidelines For Using Loops
	Iterative Control: Nested Loops
	Nested Loops�
	Nested Loops continued
	Nested Loops continued
	Guidelines for Loop Labels�
	Introduction to Explicit Cursors
	Context Areas and Cursors
	Explicit Cursors continued�
	Example:�
	Explicit Cursor Operations�
	Controlling Explicit Cursors�
	Controlling Explicit Cursors continued�
	Declaring the Cursor�
	Guidelines for Declaring the Cursor
	Opening the Cursor
	Opening the Cursor continued
	Fetching Data from the Cursor
	Guidelines for Fetching Data from the Cursor�
	Closing the Cursor�
	Guidelines for Closing the Cursor�
	Using Explicit Cursor Attributes
	Cursors and Records�
	Explicit Cursor Attributes
	%ISOPEN Attribute
	%ROWCOUNT and %NOTFOUND Attributes�
	Example of %ROWCOUNT and %NOTFOUND
	Explicit Cursor Attributes in SQL Statements�
	Cursor FOR Loops
	Cursor FOR Loops
	Cursor FOR Loops continued�
	Guidelines for Cursor FOR Loops
	Testing Cursor Attributes
	Cursor FOR Loops Using Subqueries
	Cursors with Parameters
	Cursors with Parameters
	Defining Cursors with Parameters
	Examples:�
	Example:�
	Cursors with Multiple Parameters�
	Using Cursors for Update
	Declaring a Cursor with the FOR UPDATE Clause
	FOR UPDATE OF column-name
	WHERE CURRENT OF Clause
	Example:�
	Using Multiple Cursors
	Sample Problem 1
	Sample Problem 1 Cont
	Sample Problem 2
	Sample Problem 2 Cont
	Using FOR Loops with Multiple Cursors

