
Copyright © 2009, Oracle. All rights reserved.

Semester 1 Mid Term Review

Copyright © 2009, Oracle. All rights reserved.

Semester 1 Mid Term Review

This slide set contains the following topics:

Introduction to PL/SQL Benefits of PL/SQL
Creating PL/SQL Blocks Review of SQL SELECT Statements
Review of Single-Row Functions Using Variables in PL/SQL
Recognizing PL/SQL Lexical Units Recognizing Data Types
Using Scalar Data Types Review of SQL Joins
Review of SQL Group Functions and Subqueries
Writing PL/SQL Executable Statements Nested Blocks and Variable Scope
Good Programming Practices Review of SQL DML
Retrieving Data in PL/SQL Manipulating Data in PL/SQL
Using Transaction Control Statements Conditional Control: IF Statements
Conditional Control: CASE Statements Iterative Control: Basic Loops
Iterative Control: WHILE and FOR Loops Iterative Control: Nested Loops
Introduction to Explicit Cursors Using Explicit Cursor Attributes
Cursor FOR Loops Cursors with Parameters
Using Cursors for Update Using Multiple Cursors

Copyright © 2009, Oracle. All rights reserved.

Introduction to PL/SQL

4

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

• Stands for Procedural Language extension to SQL
– It allows basic program logic and control flow to be combined

with SQL statements
• Is an Oracle proprietary programming language

– It can be used only with an Oracle database or tool
• Is a procedural language

– It produces a result when a series of instructions are followed
• Is a 3GL (third-generation programming language)

– It is a “high-level” programming language

What is PL/SQL?

Presenter
Presentation Notes
What Is PL/SQL?

PL/SQL is a proprietary language, that is, it is owned by Oracle and can be used only with an Oracle database or tool.

PL/SQL is part of a class of programming languages called procedural languages. Other procedural languages include C, Perl, Java and Visual Basic.

Evolution of Programming Languages

1GL: Low level or machine language that a computer processor can interpret (for example, machine languages)

2GL: Assembler or assembly language that is converted by an assembler into a machine language (for example, assembly languages)

3GL: A “high-level” programming language that is converted into machine language by a compiler. 3GLs require extensive knowledge of programming language (for example, Basic, C, Fortran, Pascal, Java, PL/SQL)

4GL: A language that is closer to natural language than a programming language; most 4GLs are used to access databases (for example, SQL)

5GL: Two possible definitions:

A language that uses a visual or graphical development interface to create source language that is usually compiled with a 3GL or 4GL language compiler (for example, Microsoft, Borland, IBM have visual languages for developing applications in Java)

A language used for artificial intelligence or neural networks

5

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

• The primary language used to access and modify data in
a relational database

• A nonprocedural language
– Also known as a "declarative language," it allows the

programmer to focus on input and output rather than the
program steps

• A 4GL (fourth-generation-programming language)
– A language that is closer to natural language than a

programming language; query languages are generally 4GL
• A common query language for many types of databases

including Oracle
• A language standardized by the American National

Standards Institute (ANSI)

What is Structured Query Language (SQL)?

Presenter
Presentation Notes
What Is SQL?

Oracle generally pronounces SQL as “sequel”. Other vendors may pronounce SQL as separate letters.

Stress that we need both SQL and PL/SQL. They are not alternatives to each other. Only SQL can be used to access the table data, and only PL/SQL is used to write the procedural logic.

6

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

DECLARE
v_new_letter_grade varchar2(1);
CURSOR c_enrollments IS
SELECT stu_id, final_numeric_grade FROM enrollments WHERE class_id=1;

BEGIN
FOR c1 IN c_enrollments
LOOP
IF c1.final_numeric_grade BETWEEN 66 and 75 THEN v_new_letter_grade := 'A';
ELSIF c1.final_numeric_grade BETWEEN 56 AND 65 THEN v_new_letter_grade := 'B';
ELSIF c1.final_numeric_grade BETWEEN 46 AND 55 THEN v_new_letter_grade := 'C';
ELSIF c1.final_numeric_grade BETWEEN 36 AND 45 THEN v_new_letter_grade := 'D';
ELSE

v_new_letter_grade := 'F';
END IF;
UPDATE enrollments

SET final_letter_grade=v_new_letter_grade WHERE class_id=1
AND stu_id=c1.stu_id;

END LOOP;
COMMIT;

END;

PL/SQL extends SQL with Procedural Logic:

7

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

We use PL/SQL to write the procedural code, and embed SQL
data-accessing statements within the PL/SQL code.
• The code uses variables, cursors, and conditional logic.
• PL/SQL provides procedural constructs such as:

– Variables, constants, and types
– Control structures such as conditional statements and loops
– Reusable program units that are written once and executed

many times

Procedural Constructs:

8

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

DECLARE
…
BEGIN

FOR c1 IN c_enrollments
LOOP

IF c1.final_numeric_grade BETWEEN 66 AND 75 THEN
v_new_letter_grade := 'A';

ELSIF c1.final_numeric_grade BETWEEN 56 AND 65 THEN
v_new_letter_grade := 'B';

…
ELSE

v_new_letter_grade := 'F';
END IF;
UPDATE enrollments

SET final_letter_grade=v_new_letter_grade
WHERE class_id=1
AND stu_id=c1.stu_id;

END LOOP;
END;

Cursor

Iterative control

Conditional
control

VariableSQL

Procedural Constructs:

Copyright © 2009, Oracle. All rights reserved.

Benefits of PL/SQL

10

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

The first and foremost advantage of PL/SQL is the integration of
procedural constructs with SQL.

• SQL is a nonprocedural language. When you issue a SQL
command, your command tells the database server what to
do. However, you cannot specify how to do it.

• PL/SQL integrates control statements and conditional
statements with SQL. This gives you better control of your
SQL statements and their execution.

Benefit 1: Integration of procedural constructs with SQL

11

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

The basic unit in a PL/SQL program is a block. All PL/SQL
programs consist of blocks. These blocks can be thought of as
modules and can be “modularized” in a sequence or nested in
other blocks.

Benefit 2: Modularized program development

12

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Modularized program development has the
following advantages:
• You can group logically related

statements within blocks.
• You can nest blocks inside other blocks

to build powerful programs.

Benefit 2: Modularized program development (continued)

13

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

• You can break your application
into smaller modules. If you are
designing a complex
application, PL/SQL allows you
to break down the application
into smaller, manageable, and
logically related modules.

• You can easily read, maintain,
and debug the code.

Benefit 2: Modularized program development (continued)

14

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

PL/SQL allows you to logically combine multiple SQL statements
as one unit or block. The application can send the entire block to
the database instead of sending the SQL statements one at a
time. This significantly reduces the number of database calls.

SQL
IF...THEN

SQL
ELSE

SQL
END IF;
SQL

SQL 1

SQL 2
…

Benefit 3: Improved performance

Presenter
Presentation Notes
Improved Performance

The following features also result in improved performance:

PL/SQL variables store data in the same internal binary format as the database does, so no data conversion is needed.

PL/SQL is executed in the same memory space as the Oracle server and therefore there is no communications overhead between the two programs.

PL/SQL functions can be called directly from SQL.

PL/SQL procedures can be executed by database events.

15

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

PL/SQL is integrated in Oracle tools such as Oracle Forms
Developer, Oracle Report Builder, and Application Express.

SQL

PL/SQL

Benefit 4: Integration with Oracle tools

16

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

PL/SQL programs can run anywhere an Oracle server runs,
irrespective of the operating system and the platform. PL/SQL
programs do not need to be tailored for different operating
systems and platforms.
You can write portable program packages and create libraries that
can be reused on Oracle databases in different environments.

Linux IBM z/OSHP Tru64 Solaris

Benefit 5: Portability

17

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

An exception is an error that occurs in the database or in a
user’s program during runtime. Examples of errors include:
hardware or network failures, application logic errors, data
integrity errors, and so on. You can prepare for errors by
writing exception handling code. Exception handling code tells
your program what to do in the event of an exception.
PL/SQL allows you to handle database and program
exceptions efficiently. You can define separate blocks for
dealing with exceptions.

If there is no data found then …
If too many rows are returned then…
If an invalid number is returned then …

Benefit 6: Exception handling

Copyright © 2009, Oracle. All rights reserved.

Creating PL/SQL Blocks

19

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

A PL/SQL block consists of three sections:
Declarative (optional): The declarative section begins with the
keyword DECLARE and ends when your executable section starts.
Executable (required): The executable section begins with the
keyword BEGIN and ends with END. Observe that END is terminated
with a semicolon. The executable section of a PL/SQL block can in
turn include any number of nested PL/SQL blocks.
Exception handling (optional): The exception section is nested
within the executable section. This section begins with the keyword
EXCEPTION.

PL/SQL Block Structure

20

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

DECLARE (Optional)
Variables, cursors, user-defined exceptions

BEGIN (Mandatory)
- SQL statements
- PL/SQL statements

EXCEPTION (Optional)
Actions to perform
when errors occur

END; (Mandatory)
In a PL/SQL block, the keywords DECLARE, BEGIN, and
EXCEPTION are not terminated by a semicolon. However, the
keyword END, all SQL statements, and PL/SQL statements
must be terminated with a semicolon.

PL/SQL Block Structure (continued)

21

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Section Description Inclusion

Declarative
(DECLARE)

Contains declarations of all variables,
constants, cursors, and user-defined
exceptions that are referenced in the
executable and exception sections.

Optional

Executable
(BEGIN …
END;)

Contains SQL statements to retrieve data
from the database and PL/SQL statements
to manipulate data in the block. Must
contain at least one statement.

Mandatory

Exception
(EXCEPTION)

Specifies the actions to perform when
errors and abnormal conditions arise in the
executable section.

Optional

PL/SQL Block Structure (continued)

Presenter
Presentation Notes
Instructor Note

DECLARE is not needed if no variables, constants, cursors or user-defined exceptions are required. But nearly all real-life blocks will need variables and/or cursors, therefore nearly all real-life blocks will need a DECLARE section.

Open the sample code file for this lesson and show students different examples of code. Ask them to identify the optional and mandatory elements of the code.

22

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

A PL/SQL program comprises one or more blocks.
These blocks can be entirely separate or nested within
another.

There are three types of blocks that can make up a
PL/SQL program. They are:

• Anonymous blocks
• Procedures
• Functions

Subprograms

Block Types

23

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Anonymous blocks:
• Unnamed blocks
• Not stored in the database
• Declared inline at the point in an

application where they are executed
• Compiled each time the application is

executed
• Passed to the PL/SQL engine for

execution at run time
• Cannot be invoked or called because

they do not have names and do not
exist after they are executed

DECLARE]

BEGIN
--statements

[EXCEPTION]

END;

Anonymous Blocks

24

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

BEGIN
DBMS_OUTPUT.PUT_LINE('PL/SQL is easy!');

END;

DECLARE
v_date DATE := SYSDATE;

BEGIN
DBMS_OUTPUT.PUT_LINE(v_date);

END;

DECLARE
v_lname VARCHAR2(15);

BEGIN
SELECT last_name INTO v_lname
FROM employees WHERE job_id = 'ST_CLERK';
DBMS_OUTPUT.PUT_LINE('The last name of the ST_CLERK is :

'||v_lname);
EXCEPTION

WHEN TOO_MANY_ROWS THEN
DBMS_OUTPUT.PUT_LINE (' Your select statement retrieved multiple

rows. Consider using a cursor.');
END;

Examples of Anonymous Blocks

25

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Subprograms:
• Are named PL/SQL blocks
• Are stored in the database
• Can be invoked whenever you

want to depending on your
application

• Can be declared as procedures or
as functions
– Procedure: performs an action
– Function: computes and returns a

value

PROCEDURE name
IS
BEGIN
--statements

[EXCEPTION]

END;

FUNCTION name
RETURN datatype
IS
BEGIN
--statements
RETURN value;

[EXCEPTION]

END;

Subprograms

26

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

1. Procedure to print the current date

2. Function to return the number of characters in a string

CREATE PROCEDURE print_date IS
v_date VARCHAR2(30);

BEGIN
SELECT TO_CHAR(SYSDATE,'Mon DD, YYYY')

INTO v_date
FROM DUAL;

DBMS_OUTPUT.PUT_LINE(v_date);
END;

CREATE FUNCTION num_characters (p_string IN
VARCHAR2)
RETURN INTEGER IS
v_num_characters INTEGER;

BEGIN
SELECT LENGTH(p_string) INTO v_num_characters

FROM dual;
RETURN v_num_characters;

END;

Examples of Subprograms:

27

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

You can use SQL
Commands to enter and
run a single SQL
statement or a single
PL/SQL block.

A SQL script can contain
one or more SQL
statements and/or
PL/SQL blocks. Use
SQL Scripts to enter
and run multi-statement
scripts.

SQL Commands

Copyright © 2009, Oracle. All rights reserved.

Review of SQL SELECT Statements

29

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

SELECT is the keyword that retrieves column(s) from a table.

The FROM clause specifies the table name(s).

SELECT * FROM tablename retrieves all the data in a table.

SELECT <column list> FROM tablename retrieves the
columns specified.

The WHERE clause specifies a condition that restricts the rows
returned by the SELECT statement.

Selecting Data

30

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

ORDER BY specifies the display sequence of the result.
The keywords ASC or DESC may be added after the column
name to specify ascending or descending sequence.

SELECT country_name
FROM wf_countries
ORDER BY country_name;

COUNTRY_NAME
Anguilla
Antarctica
Antiqua and Barbuda
Arab Republic of Egypt
Argentine Republic
Aruba

Bailiwick of Jersey

Belize
More than 10 rows available. Increase rows selector to view more rows.

Bailiwick of Guernsey

Barbados

Sorting

31

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

This example uses the multiplication operator to calculate the
new area of Benin, if a land reclamation project increased its area
by 2 percent.

SELECT country_name, area, area * 1.02
FROM wf_countries
WHERE country_id = 229;

Republic of Benin 112620 114872.4

COUNTRY_NAME AREA AREA*1.02

Calculations

32

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

This example uses an alias to display the calculated value as
"New Area".

SELECT country_name, area, area * 1.02 "New Area"
FROM wf_countries
WHERE country_id = 229;

Republic of Benin 112620 114872.4

COUNTRY_NAME AREA AREA*1.02

Column aliases

33

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Concatenation means to connect or link together in a series. The
concatenation operator is || (2 vertical bars sometimes referred to
as “pipes”).
A literal value is a character, a number, or a date that is included
in the SELECT list and that is not a column name or a column
alias. Literal values are often used with concatenation to create
readable text output.

SELECT country_name || ' has an area of ' || area
as "Readable Text"
FROM wf_countries;

Readable Text
Aruba has an area of 193

Antiqua and Barbuda has an area of 443
United Arab Emirates has an area of 82880
Islamic Republic of Afghanistan has an area of 647500
Peoples Democratic Republic of Algeria has an area of 2381740
Republic of Azerbaijan has an area of 86600
Republic of Albania has an area of 28748

Concatenation

Presenter
Presentation Notes
Remind students that the concatenation operator does not automatically insert spaces before and after a literal.

34

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

The DISTINCT keyword is used to eliminate duplicate rows from
the output of a SQL statement. This example returns all the
region IDs from the WF_COUNTRIES table. Notice the duplicates.

SELECT region_id
FROM wf_countries;

REGION_ID
29

145
29

15
145
39

39

More than 10 rows available. Increase rows selector to view more rows.

18

34

145

DISTINCT

Presenter
Presentation Notes
Instructor Note

Clarify that the results shown in the example are a partial list from the actual data. It is probably best to demonstrate this by executing the statements in Application Express so that students can see all the data.

35

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

The DISTINCT keyword is used to eliminate duplicate rows from
the output of a SQL statement. This example eliminates the
duplicates.

SELECT DISTINCT region_id
FROM wf_countries;

REGION_ID
34

29
155

21

More than 10 rows available. Increase rows selector to view more rows.

30

11

14

151

13

5

DISTINCT

Presenter
Presentation Notes
Instructor Note

Clarify that the results shown in the example are a partial list from the actual data. It is probably best to demonstrate this by executing the statements in Application Express so that students can see all the data.

36

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

The BETWEEN...AND operator is used to select and display rows
based on a range of values. The BETWEEN...AND condition is
specified in the WHERE clause and the results include the
boundary values if present.

SELECT country_name, coastline
FROM wf_countries
WHERE coastline BETWEEN 500 AND 550;

COUNTRY_NAME COASTLINE

Republic of Cote d Ivoire 515

Republic of Kenya 536

Republic of Latvia 531

Republic of Ghana 539

Paracel Islands 518

Commonwealth of Puerto Rico 501

Republic of Senegal 531

BETWEEN...AND

Presenter
Presentation Notes
Instructor Note

Ask the class to point out the difference between the example and the following statement:

SELECT country_name, coastline from WF_COUNTRIES

WHERE coastline >= 500 and coastline <= 550;

Answer: No difference. The results are the same and there is no difference in performance.

37

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

The IN condition is used to test whether a value is in a specified
set of values.

This example selects countries that are in region 2 or 3.

SELECT region_id, country_name
FROM wf_countries
WHERE region_id IN (5,9);

REGION_ID COUNTRY_NAME
9 Territory of American Somoa

Argentine Republic
9
9
5
9
5
5
5

Commonwealth of Australia
Antarctica
Republic of Bolivia
Solomon Islands
Federative Republic of Brazil
Republic of Chile
Republic of Colombia

5

More than 10 rows available. Increase rows selector to view more rows.
9 Commonwealth of the Northern Mariana Islands

IN

Presenter
Presentation Notes
Instructor Note

Ask the class to point out the difference between the example and the following statement:

SELECT region_id, country_name FROM wf_countries

WHERE region_id = 5 OR region_id = 9;

Answer: No difference. The results are the same and there is no difference in performance.

38

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

The LIKE condition allows you to select rows that match either
literal strings or number patterns.

The % and the underscore (_) are wildcard characters that can be
used to construct a search string. The % symbol is used to
represent any sequence of zero or more characters. The
underscore (_) symbol is used to represent a single character.

SELECT country_name,
national_holiday_name

FROM wf_countries
WHERE national_holiday_name

LIKE '%Independence%';

COUNTRY_NAME NATIONAL_HOLIDAY_NAME

Antiqua and Barbuda Independence Day (National Day)

United Arab Emirates Independence Day
Independence Day
Independence Day
Independence Day
Independence Day
Independence Day
Independence Day
Independence Day
Independence Day

Islamic Republic of Afghanistan
Republic of Albania
Republic of Armenia

Republic of Angola
Barbados
Republic of Botswana
Commonwealth of The Bahamas
Peoples Republic of Bangladesh
More than 10 rows available. Increase rows selector to view
more rows.

LIKE

Presenter
Presentation Notes
Instructor Note

Clarify that the results shown in the example are a partial list from the actual data. It is probably best to demonstrate this by executing the statements in Oracle Application Express so that students can see all the data.

Copyright © 2009, Oracle. All rights reserved.

Review of SQL Single-Row Functions

40

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Case manipulation functions used in a SELECT statement
temporarily convert character data to a specified case.

LOWER converts alpha characters to lowercase.

SELECT country_id, country_name, area
FROM wf_countries
WHERE LOWER(country_name) = 'kingdom of tonga';

COUNTRY_ID COUNTRY_NAME AREA

676 Kingdom of Tonga 748

Case Manipulation Functions

Presenter
Presentation Notes
Instructor Note

The three example statements return the same row. Remind students that case manipulation functions are especially useful when one is not sure of what case (upper, lower, initial caps) the data is stored in. The functions help avoid a mismatch between the case of the query and the database case storage.

41

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

UPPER converts alpha characters to uppercase.

INITCAP converts alpha character values to uppercase for the
first letter of each word.

SELECT country_id, country_name, area
FROM wf_countries
WHERE UPPER(country_name) = 'KINGDOM OF TONGA';

SELECT country_id, country_name, area
FROM wf_countries
WHERE INITCAP (country_name) = 'Kingdom Of Tonga';

Case Manipulation Functions

42

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Character manipulation functions temporarily convert character
data to different values.

CONCAT joins two values together.

SELECT CONCAT (country_name,internet_extension)
"Country and extension"

FROM wf_countries WHERE country_id = 229;

Country and extension

Republic of Benin.bj

Character Manipulation Functions

Presenter
Presentation Notes
Instructor Note

Walk the class through other examples that use literals. This will be a good way to review the DUAL table.

SELECT CONCAT('Hello',' World') FROM dual;

returns 'Hello World'

SELECT SUBSTR ('Hello World',7,5) FROM dual;

returns 'World'

SELECT LENGTH ('Hello World') FROM dual;

returns 11

43

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

SUBSTR extracts a string of a determined length.

LENGTH shows the length of a string as a number value.

SELECT SUBSTR(country_name,3,3)
FROM wf_countries WHERE country_id = 229;

SELECT LENGTH(country_name)
FROM wf_countries WHERE country_id = 229;

LENGTH(COUNTRY_NAME)

17

SUBSTR(COUNTRY_NAME,3,3)

pub

Character Manipulation Functions

Presenter
Presentation Notes
Note that if a column is defined as datatype CHAR instead of VARCHAR2, the LENGTH function will include trailing spaces.

44

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Number functions temporarily convert number data to different
values.

ROUND: Used to round numbers to a specified number of
decimal places.

SELECT country_id, median_age, ROUND(median_age,1)
FROM wf_countries WHERE country_id = 20;

COUNTRY_ID MEDIAN_AGE ROUND(MEDIAN_AGE,1)

20 24 24

Number Functions

45

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

TRUNC: Used to terminate the column, expression, or value to a
specified number of decimal places

MOD: Used to return the remainder when one number is divided
by another

SELECT TRUNC(999.128,2) FROM dual;

SELECT country_id,population, MOD(population,2)
FROM wf_countries WHERE country_id = 3;

TRUNC(999.128,2)
999.12

COUNTRY_ID POPULATION MOD(POPULATION,2)

3 15233244 0

Number Functions

Presenter
Presentation Notes
Point out that one of the more common uses of MOD is to determine whether a number is odd or even. Even numbers will have no remainder when divided by 2.

46

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

TO_CHAR converts dates stored in a database to a format
specified by you. The syntax is:

Example:

TO_CHAR (date, 'format model you specify')

SELECT TO_CHAR(SYSDATE,'Month ddth, yyyy') as TODAY
FROM dual;

TODAY

November 30th, 2006

Conversion Functions

47

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

TO_CHAR converts columns of number data to a desired format.
The syntax is:

Example:

TO_CHAR (number, 'format model you specify')

SELECT country_id, TO_CHAR(population,'99,999,999,999')
FROM wf_countries;

COUNTRY_ID TO_CHAR(POPULATION,’99,999,999,999’)
297 71,891
1268 69,108
971 2,602,713
93 31,056,997
213 32,930,091

994 7,961,619

Conversion Functions

48

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

TO_DATE converts a character string to a specified date
format. The syntax is:

Example:

TO_DATE('character string', 'format model')

SELECT TO_DATE('January 1, 2006','Month DD, RRRR')
AS "New Year"
FROM dual;

New Year

01-JAN-06

Conversion Functions

49

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

TO_NUMBER converts a character string to a number. The
syntax is:

Example:

TO_NUMBER(character string, 'format model')

SELECT TO_NUMBER('95.5','999.99')
AS converted
FROM dual;

CONVERTED

95.5

Conversion Functions

50

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

SYSDATE is a date function that returns the current
database server date and time.

Example:

SELECT SYSDATE+1 as tomorrow
FROM dual;

TOMORROW

01-DEC-06

Date Functions

Presenter
Presentation Notes
Instructor Note

Remind students that the Oracle database’s default unit of date arithmetic is one day: “+5” means “add 5 days”. To add 5 hours, we would use “+5/24”.

51

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

MONTHS_BETWEEN returns the number of months between two
dates.

Example:

SELECT country_name "Country",
date_of_independence "Independence Day",
TO_CHAR(MONTHS_BETWEEN(SYSDATE,

date_of_independence),'999,999,999.99')
AS "Months Since"

FROM wf_countries
WHERE country_id = 229;

Country Independence Day Months Since

Republic of Benin 1-Aug-1960 555.97

Date Functions

Presenter
Presentation Notes
Instructor Note

Remind students that the DATE data type always stores year information as a four-digit number internally: two digits for the century and two digits for the year. For example, the Oracle database stores the year as 1996 or 2005, not just as 96 or 05. The century component is not displayed by default.

In the second example, the value returned by the MONTHS_BETWEEN function is formatted using a TO_CHAR function.

52

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

ADD_MONTHS increments a date by calendar months

Example:

SELECT ADD_MONTHS(SYSDATE, 120) "10 years from
today"
FROM dual;

10 yrs from today

30-NOV-16

Date Functions

Presenter
Presentation Notes
Instructor Note

Ask students: why do we need the MONTHS_BETWEEN and ADD_MONTHS functions? Answer: Because not all months contain the same number of days. To add one month to SYSDATE, we cannot use SYSDATE+31. What if today is in February?

53

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

NVL converts a null value to a date, a character, or a number.

The syntax is:

NVL(value that may contain a null,
value to replace the null)

General Functions

Presenter
Presentation Notes
Instructor Note

Review the meaning of NULL with the class. NULL is a value that is unknown. It isn’t equal to zero or a blank space.

54

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

NVL examples:

SELECT currency_name, comments
FROM wf_currencies
WHERE currency_code = 'AUD';

SELECT currency_name,
NVL(comments,'No comment') comments

FROM wf_currencies
WHERE currency_code = 'AUD';

CURRENCY_NAME COMMENTS
Australian dollar No comment

CURRENCY_NAME COMMENTS
Australian dollar -

General Functions

55

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

NULLIF compares two functions. If they are equal, the function
returns null. If they are not equal, the function returns the first
expression. The syntax is:

NULLIF(expression 1, expression 2)

SELECT country_translated_name "Country Name Trans",
country_name "Country Name",
NULLIF(country_translated_name, country_name)

"nullif returns"
FROM wf_countries;

Country Name Trans Country Name nullif returns
-
-

Aruba

Antiqua and Barbuda

-
-

United Arab Emirates Al Imarat al Arabiyah al Muttahidah
Afghanistan Islamic Republic of Afghanistan Afghanistan
Algeria Peoples Democratic Republic of Algeria Algeria
Azerbaijan

Al Imarat al Arabiyah al Muttahidah

Republic of Azerbaijan Azerbaijan

General Functions

Presenter
Presentation Notes
Instructor Note

Walk through the NULLIF example. Point out that it nests two functions, NULLIF and TO_CHAR. The date_of_independence column is a date, but the national_holiday_date column is of character data type. Therefore, we converted the date_of_independence to a character string so we could compare the two columns.

Copyright © 2009, Oracle. All rights reserved.

Using Variables in PL/SQL

57

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Variables can be used for:
• Temporary storage of data
• Manipulation of stored values
• Reusability

SELECT
first_name,
department_id

INTO
v_emp_fname,
v_emp_deptno

FROM …

emp_fname

emp_deptno

Jennifer

10

Use of Variables

Presenter
Presentation Notes
Use of Variables

Variables are mainly used for the storage of data and manipulation of stored values. Consider the SQL statement shown in the slide. The statement is retrieving the first_name and department_id from the table. If you have to manipulate the first_name or the department_id, then you have to store the retrieved value. Variables are used to temporarily store the value. You can use the value stored in these variables for processing or manipulating the data. Therefore, the variables are used for storing and manipulating data. Variables can store any PL/SQL object such as variables, types, cursors, and subprograms.

Reusability is another advantage of declaring variables. After they are declared, variables can be used repeatedly in an application by referring to them in the statements.

58

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Variables are:

• Declared and initialized in the declarative section

• Used and assigned new values in the executable section

• Passed as parameters to PL/SQL subprograms

• Assigned to hold the output of a PL/SQL subprogram

Handling Variables in PL/SQL

59

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

• All PL/SQL variables must be declared in the
declaration section before referencing them
in the PL/SQL block.

• The purpose of a declaration is to allocate
storage space for a value, specify its data
type, and name the storage location so that
you can reference it.

• Variables can be declared in the declarative
part of any PL/SQL block, subprogram, or
package.

Declaring and Initializing PL/SQL Variables

Presenter
Presentation Notes
Point out that a variable is simply a name or label for a value stored in a piece of computer memory.

60

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Syntax:

• identifier is the name of the variable
• CONSTANT constrains the variable so that its value cannot

change; constants must be initialized
• datatype is a scalar, composite, reference, or LOB data type
• NOT NULL constrains the variable so that it must contain a

value (NOT NULL variables must be initialized.)
• Expr can be a literal, another variable, or an expression

involving operators and functions

identifier [CONSTANT] datatype [NOT NULL]
[:= expr | DEFAULT expr];

Declaring and Initializing Variables:

Presenter
Presentation Notes
Declaring and Initializing PL/SQL Variables

In addition to variables, you can also declare cursors and exceptions in the declarative section. You will learn how to declare cursors and exceptions later in the course.

61

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Examples

DECLARE
v_emp_hiredate DATE;
v_emp_deptno NUMBER(2) NOT NULL := 10;
v_location VARCHAR2(13) := 'Atlanta';
c_comm CONSTANT NUMBER := 1400;
v_population INTEGER;
v_book_type VARCHAR2(20) DEFAULT 'fiction';
v_artist_name VARCHAR2(50);
v_firstname VARCHAR2(20):='Rajiv';
v_lastname VARCHAR2(20) DEFAULT 'Kumar';
c_display_no CONSTANT PLS_INTEGER := 20;

…

Declaring and Initializing Variables:

62

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

After a variable is declared, you can assign it a value and
use it in the executable section of a PL/SQL block.

DECLARE
v_myname VARCHAR2(20);

BEGIN
DBMS_OUTPUT.PUT_LINE('My name is: '||v_myname);
v_myname := 'John';
DBMS_OUTPUT.PUT_LINE('My name is: '||v_myname);

END;

The output is:

My name is:
My name is: John

Statement process.

Assigning Values in the Executable Section

Presenter
Presentation Notes
A non-initialized variable contains a null value until a non-null value is explicitly assigned to it.

63

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

In this block, the variable v_myname is declared and initialized in
the declarative section. V_myname will hold the value John after
initialization. Note that this value is manipulated in the executable
section of the block.

The output is:

DECLARE
v_myname VARCHAR2(20):= 'John';

BEGIN
v_myname := 'Steven';
DBMS_OUTPUT.PUT_LINE('My name is: '||v_myname);

END;

My name is: Steven

Statement processed.

Assigning Values in the Executable Section

64

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Parameters are values passed to a program by the user or by
another program to customize the program.

In PL/SQL, subprograms can take parameters. You can pass
variables as parameters to procedures and functions.

In the following example, the parameter v_date is being passed
to the procedure PUT_LINE, which is part of the package,
DBMS_OUTPUT.

DECLARE
v_date VARCHAR2(30);

BEGIN
SELECT TO_CHAR(SYSDATE) INTO v_date
FROM dual;

DBMS_OUTPUT.PUT_LINE(v_date);
END;

Passing Variables as Parameters to PL/SQL Subprograms

Presenter
Presentation Notes
Passing Variables as Parameters to PL/SQL Subprograms

The information in this slide will be covered in more detail in later lessons; the most important point is that you understand that in PL/SQL, a variable can be passed to subprograms.

65

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Variables can be used to hold the value that is returned by a
function.

FUNCTION num_characters (p_string IN VARCHAR2) RETURN INTEGER
IS
v_num_characters INTEGER;

BEGIN
SELECT LENGTH(p_string) INTO v_num_characters
FROM dual;

RETURN v_num_characters;
END;

DECLARE
v_length_of_string INTEGER;

BEGIN
v_length_of_string := num_characters('Oracle Corporation');
DBMS_OUTPUT.PUT_LINE(v_length_of_string);

END;

Assigning Variables to PL/SQL Subprogram Output

Presenter
Presentation Notes
Assigning Variables to PL/SQL Subprogram Output

In the anonymous block, the variable v_length_of_string is assigned the value returned by the function num_characters when the value, Oracle Corporation is passed to it.

Copyright © 2009, Oracle. All rights reserved.

Recognizing PL/SQL Lexical Units

67

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Lexical units:
• Are the building blocks of any PL/SQL block
• Are sequences of characters including letters, digits,

tabs, returns, and symbols
• Can be classified as:

– Identifiers
– Reserved words
– Delimiters
– Literals
– Comments

Lexical Units in a PL/SQL Block

68

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

An identifier is the name given to a PL/SQL object, including any
of the following:

Procedure Function Variable

Exception Constant Package

Record PL/SQL table Cursor

Identifiers

69

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

The identifiers in the following PL/SQL code are highlighted.

PROCEDURE print_date IS

v_date VARCHAR2(30);

BEGIN

SELECT TO_CHAR(SYSDATE,'Mon DD, YYYY')
INTO v_date
FROM dual;

DBMS_OUTPUT.PUT_LINE(v_date);

END;

Key: Procedure Variable Reserved word

Identifiers

Presenter
Presentation Notes
Point out that reserved words are not identifiers. They have been highlighted here (in red) to contrast them with the identifiers.

70

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Identifiers:
• Are up to 30 characters in length
• Must start with a letter
• Can include $

(dollar sign), _

(underscore), and #

(pound

sign)
• Cannot contain spaces

Properties of an Identifier

71

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Examples of valid identifiers:

Examples of invalid identifiers:

First_Name LastName address_1

ID# Total_$ primary_department_contact

First Name Contains a space

Last-Name Contains invalid "-"

1st_address_line Begins with a number

Total_% Contains invalid "%"

primary_building_department_contact More than 30 characters

Valid and Invalid Identifiers

Presenter
Presentation Notes
Tip:

Be sure to name your objects carefully. Ideally, the identifier name should describe the object and its purpose. Avoid using identifier names such as A, X, Y1, temp, and so on because they make your code more difficult to read.

72

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Reserved words are words that have special meaning to the
Oracle database.
Reserved words cannot be used as identifiers in a PL/SQL
program.

ALL CREATE FROM MODIFY SELECT

ALTER DATE GROUP NOT SYNONYM

AND DEFAULT HAVING NULL SYSDATE

ANY DELETE IN NUMBER TABLE

AS DESC INDEX OR THEN

ASC DISTINCT INSERT ORDER UPDATE

BETWEEN DROP INTEGER RENAME VALUES

CHAR ELSE INTO ROW VARCHAR2

COLUMN EXISTS IS ROWID VIEW

COMMENT FOR LIKE ROWNUM WHERE

This is a
partial
list of

reserved
words.

Reserved Words

Presenter
Presentation Notes
Reserved Words

73

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

What happens when you try to use a reserved word as an
identifier in a PL/SQL program?

DECLARE
date DATE;

BEGIN
SELECT ADD_MONTHS(SYSDATE,3) INTO date
FROM dual;

END;

ORA-06550: line 4, column 37:
PL/SQL: ORA-00936: missing expression
ORA-06550: line 4, column 3:
PL/SQL: SQL Statement ignored
2. date DATE;
3. BEGIN
4. SELECT ADD_MONTHS(SYSDATE,3) INTO date
5. FROM DUAL;
6. END;

Reserved Words

74

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Compound delimitersSimple delimiters
Symbol Meaning

+ Addition operator

– Subtraction/negation operator

* Multiplication operator

/ Division operator

= Equality operator

' Character string delimiter

; Statement terminator

Symbol Meaning

<> Inequality operator

!= Inequality operator

|| Concatenation operator

-- Single-line comment indicator

/* Beginning comment delimiter

*/ Ending comment delimiter

:= Assignment operator

Delimiters are symbols that have special meaning to the
Oracle database.

Presenter
Presentation Notes
Delimiters

You have already learned that the symbol “;” is used to terminate a SQL or PL/SQL statement.

75

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

A literal is an explicit numeric, character string, date, or Boolean
value that is not represented by an identifier.

Literals are classified as:
• Character (also known as string literals)
• Numeric
• Boolean

Literals

76

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

• Include all the printable characters in the PL/SQL character
set: letters, numerals, spaces, and special symbols.

• Have the data type CHAR and must be enclosed in single
quotation marks.

• May be composed of zero or more characters from the
PL/SQL character set.

• Are case sensitive and, therefore, PL/SQL is not equivalent
to pl/sql.

v_first_name := 'John';
v_classroom := '12C';
v_date_today := '20-MAY-2005';

Character Literals

77

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

• Are values that represent an integer or real value
• Examples:

v_elevation := 428;
v_order_subtotal := 1025.69;
v_distance_sun_to_centauri := 4.3E13;

Boolean Literals

• Are not surrounded by quotes.

• TRUE, FALSE, and NULL are Boolean literals or keywords.

v_new_customer := FALSE;
v_paid_in_full := TRUE;
v_high_school_diploma := NULL;
v_island := FALSE;

Numeric Literals

78

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

• Explain what a piece of code is trying to achieve.
• Are extremely valuable for code readability and maintenance.
• Are good programming practice.
• Are not interpreted or processed by the PL/SQL compiler.
• Two dashes -- are used for commenting a single line.
• /* */ is used for commenting multiple lines.

DECLARE
v_annual_sal NUMBER (9,2);

BEGIN -- Begin the executable section

/* Compute the annual salary based on the
monthly salary input from the user */
v_annual_sal := v_monthly_sal * 12;

END; -- This is the end of the block

Comments

Copyright © 2009, Oracle. All rights reserved.

Recognizing Data Types

80

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

• A data type specifies a storage format, constraints, and a
valid range of values.

• PL/SQL supports five categories of data type:
– Scalar: Hold a single value
– Composite: Contain internal elements that are either scalar

(record) or composite (record and table)
– Large object (LOB): Hold values, called locators, that specify

the location of large objects (such as graphic images) that are
stored out of line

– Reference: Hold values, called pointers, that point to a storage
location

– Object: A schema object with a name, attributes and methods.
An object data type is similar to the class mechanism
supported by C++ and Java.

PL/SQL Data Types

Presenter
Presentation Notes
PL/SQL Data Types

Reference and Object data types are not covered in this course. For more information, refer to the PL/SQL User’s Guide and Reference.

81

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Scalar data types:
• Hold a single value
• Have no internal components
• Can be classified into four

categories:
– Character
– Number
– Date
– Boolean

Atlanta

TRUE

25-JAN-01

256120.08

The soul of the lazy man
desires, and has nothing;
but the soul of the diligent

shall be made rich.

Scalar Data Types

Presenter
Presentation Notes
Scalar Data Types

Teachers should be aware that character and number data types have subtypes that associate a base type to a constraint. For example, INTEGER and POSITIVE are subtypes of the NUMBER base type: an INTEGER is a base type (NUMBER) constrained to allow only whole numbers (no decimal places).

For more information and the complete list of scalar data types, refer to the PL/SQL User’s Guide and Reference.

82

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

CHAR

[(maximum_length)]

Base type for fixed-length character data up to
32,767 bytes. The default length is 1.

VARCHAR2

(maximum_length)
Base type for variable-length character data up
to 32,767 bytes. There is no default size for
VARCHAR2 variables and constants.

LONG Character data of variable length

LONG RAW Raw binary data of variable length (not
interpreted by PL/SQL)

Scalar Data Types: Boolean

BOOLEAN Base type that stores one of the three possible
values used for logical calculations: TRUE,
FALSE, or NULL

Scalar Data Types: Character (or String)

Presenter
Presentation Notes
Students should recognize many of these scalar data types as being identical to table column data types. This is one of the benefits of using PL/SQL.

If anyone asks, a LONG variable can store up to 2 gigabytes (2,000,000,000) bytes.

83

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

NUMBER

[(precision, scale)]
Number having precision p and scale s. The
precision p can range from 1 to 38. The scale s can
range from –84 to 127.

BINARY_INTEGER Base type for integers between –2,147,483,647 and
2,147,483,647.

PLS_INTEGER Base type for signed integers between
–2,147,483,647 and 2,147,483,647. PLS_INTEGER
and BINARY_INTEGER values require less storage
and are faster than NUMBER values.

BINARY_FLOAT

BINARY_DOUBLE

New data types introduced in Oracle Database 10g.
They represent floating-point number in the IEEE
754 format. BINARY_FLOAT requires 5 bytes to
store the value and BINARY_DOUBLE requires 9

bytes.

Scalar Data Types: Number

Presenter
Presentation Notes
Point out that in PL/SQL (as in table columns) precision includes scale. For example, NUMBER(6,2) can contain a maximum value of 9999.99.

Do not go into detail about the *_INTEGER and BINARY_* data types.

84

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

DATE Base type for dates and times. DATE values

include the time of day in seconds since
midnight. The range for dates is between
4712 B.C. and A.D. 9999.

TIMESTAMP The TIMESTAMP data type, which extends the
DATE data type, stores the year, month, day,

hour, minute, second, and fraction of seconds
TIMESTAMP WITH TIME
ZONE

The TIMESTAMP WITH TIME ZONE data type,
which extends the TIMESTAMP data type,

includes a time-zone displacement—that is,the
difference (in hours and minutes) between local
time and Coordinated Universal Time (UTC),
formerly known as Greenwich Mean Time

Scalar Data Types: Date

85

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

TIMESTAMP WITH
LOCAL TIME ZONE

This data type differs from TIMESTAMP WITH
TIME ZONE in that when you insert a value into

a database column, the value is normalized to
the database time zone, and the time-zone
displacement is not stored in the column. When
you retrieve the value, Oracle server returns the
value in your local session time zone.

INTERVAL YEAR TO
MONTH

You use the INTERVAL YEAR TO MONTH data

type to store and manipulate intervals of years
and months.

INTERVAL DAY TO
SECOND

You use the INTERVAL DAY TO SECOND data

type to store and manipulate intervals of days,
hours, minutes, and seconds.

Scalar Data Types: Date (continued)

86

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

A scalar type has no internal components. A composite type has
internal components that can be manipulated individually.
Composite data types (also known as collections) are of the
following types: RECORD, TABLE, NESTED TABLE, VARRAY

TRUE 23-DEC-98 ATLANTA

1 SMITH
2 JONES
3 NANCY
4 TIM

PLS_INTEGER VARCHAR2

PL/SQL record structure

PL/SQL table structure

Composite Data Types

Presenter
Presentation Notes
For now, it may be helpful to think of a scalar type as being like a single column value in a table, while a record data type is like a whole row of a table.

87

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

• Large objects (LOBs) are meant to store a large amount of
data.

• Database columns can be of the LOB category.
• There are several categories of LOB data types:

– character large object (CLOB)
– binary large object (BLOB)
– binary file (BFILE)
– national language character large object (NCLOB)

• Enable you to store blocks of unstructured data up to 4
gigabytes in size.

• Enable efficient, random, piecewise access to the data and
can be attributes of an object type.

LOB Data Type

Presenter
Presentation Notes
LOB data types are covered in detail later in this course.

88

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Book
(CLOB)

Photo
(BLOB)

Movie
(BFILE)

NCLOB

LOB Data Type Columns

Presenter
Presentation Notes
LOB Data Type

The character large object (CLOB) data type is used to store large blocks of character data in the database.

The binary large object (BLOB) data type is used to store large unstructured or structured binary objects in the database. When you insert or retrieve such data to and from the database, the database does not interpret the data. External applications that use this data must interpret the data.

The binary file (BFILE) data type is used to store large binary files. Unlike other LOBS, BFILES are not stored in the database. BFILEs are stored outside the database. They could be operating-system files. Only a pointer to the BFILE is stored in the database.

The national language character large object (NCLOB) data type is used to store large blocks of single-byte or fixed-width multibyte NCHAR Unicode data in the database.

Copyright © 2009, Oracle. All rights reserved.

Using Scalar Data Types

90

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Character data types include CHAR, VARCHAR2 and LONG.

DECLARE
v_emp_job VARCHAR2(9);
v_order_no VARCHAR2(6);
v_product_id VARCHAR2(10);
v_rpt_body_part LONG;

Declaring Number Variables
Number data types include NUMBER, PLS_INTEGER,
BINARY_INTEGER, and BINARY_FLOAT.

DECLARE
v_dept_total_sal NUMBER(9,2) := 0;
count_loop BINARY_INTEGER := 0;
c_tax_rate CONSTANT NUMBER(3,2) := 8.25;

Declaring Character Variables

Presenter
Presentation Notes
Declaring Scalar Variables

The examples of variable declaration shown in the slide are defined as follows:

emp_job: Variable to store an employee job title

order_no: Variable to store an order number. Note that a number can also be used.

product_id: Variable to store a product ID

employee_no: Variable to store an employee number

rpt_body_part: Variable to store a part of a report. Note that a LOB can also be used to store large character-based objects.

91

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Date data types include DATE, TIMESTAMP, and TIMESTAMP
WITH TIMEZONE.

DECLARE
v_orderdate DATE := SYSDATE + 7;
v_natl_holiday DATE;
v_web_sign_on_date TIMESTAMP;

…

Declaring Date Variables

Presenter
Presentation Notes
Declaring Scalar Variables

The examples of variable declaration shown in the slide are defined as follows:

orderdate: Variable to store the ship date of an order and initialize to one week from today

v_natl_holiday: Variable to store the national holiday date for a country

web_sign_on_date: Variable to store the time a user last logged in to a Web site

92

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

• Conditional expressions use the logical operators AND, OR, or
NOT to check the variable values.

• Arithmetic, character, and date expressions can be used to
return a Boolean value.

A Boolean variable stores one of the three possible values
used for logical calculations: TRUE, FALSE, or NULL.
DECLARE
v_valid BOOLEAN NOT NULL := TRUE;
v_is_found BOOLEAN := FALSE;
v_underage BOOLEAN;

Declaring Boolean Variables

Presenter
Presentation Notes
Declaring Boolean Variables

With PL/SQL, you can compare variables in both SQL and procedural statements. These comparisons, called Boolean expressions, consist of simple or complex expressions separated by relational operators. In a SQL statement, you can use Boolean expressions to specify the rows in a table that are affected by the statement. In a procedural statement, Boolean expressions are the basis for conditional control. NULL stands for a missing, inapplicable, or unknown value.

Examples

emp_sal1 := 50000;

emp_sal2 := 60000;

The following expression yields TRUE:

emp_sal1 < emp_sal2

Declare and initialize a Boolean variable:

DECLARE� flag BOOLEAN := FALSE;�BEGIN� flag := TRUE;�END;�/

93

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

• Use meaningful names and follow naming conventions.
• Declare one identifier per line for better readability and code

maintenance.
• Use the NOT NULL constraint when the variable must hold a

value.
• Avoid using column names as identifiers.

DECLARE
v_employee_id NUMBER(6);

BEGIN
SELECT employee_id
INTO v_employee_id
FROM employees
WHERE last_name = 'Kochhar';

END;

Guidelines for Declaring and Initializing PL/SQL Variables

Presenter
Presentation Notes
Guidelines for Declaring and Initializing PL/SQL Variables

Here are some guidelines to follow while declaring PL/SQL variables:

Use meaningful and appropriate names for variables. For example, consider using salary and sal_with_commission instead of salary1 and salary2.

Follow naming conventions—for example, v_name to represent a variable and c_name to represent a constant.

Impose the NOT NULL constraint when the variable must contain a value. You cannot �assign nulls to a variable defined as NOT NULL. The NOT NULL constraint must be �followed by an initialization clause.

v_pincode NUMBER(15) NOT NULL := 1234;

Avoid using column names as identifiers. If PL/SQL variables occur in SQL statements and have the same name as a column, the Oracle server assumes that it is the column that is being referenced. Although the example code in the slide works, code that is written using the same name for a database table and variable name is not easy to read or maintain.

94

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Rather than hard-coding the data type and precision of a
variable, you can use the %TYPE attribute to declare a variable
according to another previously declared variable or database
column. The %TYPE attribute is most often used when the
value stored in the variable will be derived from a table in the
database.

CREATE TABLE myemps (
emp_name VARCHAR2(6),
emp_salary NUMBER(6,2));

DECLARE
v_emp_salary myemps.emp_salary%TYPE;

BEGIN
SELECT emp_salary INTO v_emp_salary
FROM myemps WHERE emp_name = 'Smith';

END;

Anchoring Variables with the %TYPE Attribute

95

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

• You can avoid errors caused by data type mismatch or
wrong precision.

• You need not change the variable declaration if the column
definition changes. That is, if you have already declared
some variables for a particular table without using the %TYPE
attribute, then the PL/SQL block may return errors if the
column for which the variable declared is altered.

• When you use the %TYPE attribute, PL/SQL determines the
data type and size of the variable when the block is
compiled. This ensures that such a variable is always
compatible with the column that is used to populate it.

Advantages of the %TYPE Attribute

Copyright © 2009, Oracle. All rights reserved.

Review of SQL Joins

97

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

An equijoin combines rows that have equal values for the
specified columns. This is sometimes called a "simple" join.

SELECT r.region_name, c.country_name, c.airports
FROM wf_world_regions r, wf_countries c
WHERE r.region_id = c.region_id
ORDER BY c.country_name;

REGION_NAME COUNTRY_NAME AIRPORTS

Caribbean Anguilla 3

Oceania Antarctica 28

Caribbean Antiqua and Barbuda 3

Northern Africa Arab Republic of Egypt 87

South America Argentine Republic 1333

Caribbean Aruba 1

Equijoin

98

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

A nonequijoin combines tables that do not have an exact
matching columns. This join is often used when a
column value in table A falls between a range of values
specified by two columns in table B.

Examine the following tables:

SELECT employee_id,

last_name, salary

FROM employees;

SELECT *

FROM job_grades;

GRADE_LEVEL LOWEST_SAL HIGHEST_SAL

A 1000 2999

B 3000 5999

C 6000 9999

D 10000 14999

E 15000 24999

F 25000 40000

EMPLOYEE_ID LAST_NAME SALARY

100 King 24000
101 Kochlar 17000

102 De Haan 17000

103 Hunold 9000

104 Ernst 6000

107 Lorentz 4200

Nonequijoin

99

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

In this example, the grade for each student is matched up with
the equivalent grade code.

SELECT e.employee_id, e.last_name, j.grade_level

FROM employees e, job_grades j

WHERE e.salary BETWEEN j.lowest_sal AND j.highest_sal;

EMPLOYEE_ID LAST_NAME GRADE_LEVEL

144 Vargas A

143 Matos A
142 Davies B

141 Rajs B

107 Lorentz B

200 Whalen B

Nonequijoin

100

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

An outer join combines rows that have equivalent values for the
specified columns plus those rows in one of the tables that have
no matching value in the other table. To indicate which table may
have missing data, use a plus sign (+) after the table's column
name in the query.
SELECT e.employee_id, e.last_name, e.department_id,

d.department_name, d.department_id
FROM employees e, departments d
WHERE e.department_id = d.department_id (+)
ORDER BY NVL(e.department_id,1) ASC;

EMPLOYEE_ID LAST_NAME DEPARTMENT_ID DEPARTMENT_NAME DEPARTMENT_ID
178 Grant - - -

200 Whalen 10 Administration 10

202 Fay 20 Marketing 20

201 Hartstein 20 Marketing 20

124 Mourgos 50 Shipping 50

141 Rajs 50 Shipping 50

142 Davies 50 Shipping 50

Outer Join

101

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

When a join query does not specify a condition in the WHERE
clause, the result is a Cartesian product. This combines each row
of one table with each row of the other resulting in many rows.
The query below produces 244*637=155,428 rows!

SELECT country_name, language_id
FROM wf_countries, wf_spoken_languages;

COUNTRY_NAME LANGUAGE_ID
United Arab Emirates 460
United Arab Emirates 1850

United Arab Emirates 460

United Arab Emirates 560

United Arab Emirates 900

United Arab Emirates 1650

United Arab Emirates 1650

United Arab Emirates 0

United Arab Emirates 460

Cartesian Product

Copyright © 2009, Oracle. All rights reserved.

Review of SQL Group Functions
and

Subqueries

103

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

These functions operate on a whole table or on a specific
grouping of rows to return one result.
SELECT TO_CHAR(AVG(population),'9,999,999,999.99') average
FROM wf_countries;

SELECT COUNT(country_id) "Number of Countries"
FROM wf_countries;

SELECT COUNT(*) "Number of Countries"
FROM wf_countries;

Number of Countries
244

AVERAGE
27,130,848.07

Group Functions

104

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

SELECT MIN(lowest_elevation)"All time low"
FROM wf_countries;

SELECT MAX(highest_elevation)"All time high"
FROM wf_countries;

SELECT TO_CHAR(SUM(area),'9,999,999,999.99') "Total area"
FROM wf_countries;

Total area
148,148,433.00

All time low
8850

All time low
-2555

Group Functions

105

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Use the GROUP BY clause to divide the rows in a table into
smaller groups. You can then use the group functions to return
summary information for each group.

The WHERE clause first excludes rows. The remaining data is
divided into groups, and group functions are applied.

SELECT region_id, COUNT(country_id)
FROM wf_countries
WHERE region_id < 15
GROUP BY region_id;

REGION_ID COUNT(COUNTRY_ID)

5 15

9 28

11 21

13 8

14 7

GROUP BY

Presenter
Presentation Notes
Group By

All individual columns specified along with the group function (AVG, SUM, COUNT, MAX, MIN, STDDEV, and VARIANCE) in the SELECT clause must be included in the GROUP BY clause.

You cannot use a column alias in the GROUP BY clause.

A GROUP BY clause can be used in a SQL statement without having a group function in the SELECT clause. For example:

	SELECT region_id, country_name

	FROM wf_countries

	GROUP BY region_id, country_name;

106

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Use the HAVING clause to restrict groups. In a query that uses a
GROUP BY and HAVING clause, the rows are first grouped, group
functions are applied, and then only those groups matching the
HAVING clause are displayed.
SELECT region_id, COUNT(country_id)
FROM wf_countries
WHERE region_id < 15
GROUP BY region_id
HAVING COUNT(country_id) < 20
ORDER BY region_id DESC;

REGION_ID COUNT(COUNTRY_ID)

14 7

13 8

5 15

HAVING

107

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

A subquery is a SELECT statement that is embedded in a clause
of another SQL statement.
Subqueries can be placed in a number of SQL clauses, including
the WHERE clause, the HAVING clause, and the FROM clause.
Single-row subqueries use single-row operators (>, =, >=, < <>,
and <=) and return only one row from the subquery.

SELECT country_name,
TO_CHAR(area,'999,999,999,999') area
FROM wf_countries
WHERE area >

(SELECT area
FROM wf_countries
WHERE country_name =
'Federative Republic of Brazil')

ORDER BY country_name;

COUNTRY_NAME AREA

Antarctica 14,000,000
Canada 9,984,670

People Republic of China 9,984,670

Russian Federation 17,075,200

United States of America 9,631,420

Subqueries

Presenter
Presentation Notes
Remind students that a subquery must be enclosed in parentheses (brackets).

108

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Group functions can be used in subqueries because they return a
single row.

SELECT country_name
FROM wf_countries
WHERE lowest_elevation =
(SELECT MIN (lowest_elevation)

FROM wf_countries);

COUNTRY_NAME

Antarctica

Group Functions and Subqueries

109

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

This example shows that subqueries can be used with joins and
other WHERE conditions.

SELECT country_name, population
FROM wf_countries
WHERE population =
(SELECT MAX(population)

FROM wf_countries c, wf_world_regions wr
WHERE c.region_id = wr.region_id
AND wr.region_name = 'Oceania');

COUNTRY_NAME POPULATION

Commonwealth of Australia 20264082

Group Functions

110

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Use multiple-row operators (IN, ANY, and ALL) to return more
than one row from the inner query.

The IN operator is used when the outer query WHERE clause is
designed to restrict rows based on a list of values returned from
the inner query.

SELECT country_name , population, airports
FROM wf_countries
WHERE country_id IN

(SELECT country_id
FROM wf_countries WHERE airports >1);

COUNTRY_NAME POPULATION AIRPORTS

United Arab Emirates 2602713 35
Republic of Azerbaijan 7961619 45
Republic of Armenia 2976372 16
Commonwealth of Australia 20264082 450
Republic of Austria 8192880 55
Antarctica 0 28

Republic of Botswana 1639833 85

Multiple-Row Subqueries

111

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

The ANY operator is used when the outer query WHERE clause is
designed to restrict rows based on any value returned from the
inner query.

SELECT country_name, population, area
FROM wf_countries
WHERE country_id = ANY
(SELECT country_id

FROM wf_countries
WHERE area <1000);

COUNTRY_NAME POPULATION AREA
Territory of Cocos (Keeling) Islands 574 14

Jay Mayen - 373

Principality of Liechtenstein 33987 160

Principality of Monaco 32543 2

Republic of Maldives 359008 300

ANY Operator

112

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

The ALL operator is used when the outer query WHERE clause is
designed to restrict rows based on all values returned from the
inner query.

SELECT country_name
FROM wf_countries c, wf_world_regions wr
WHERE c.region_id = wr.region_id
AND region_name > ALL
(SELECT region_name

FROM wf_world_regions
WHERE UPPER(region_name) LIKE 'A%');

COUNTRY_NAME
United Arab Emirates

Republic of Azerbaijan

Republic of Armenia

ALL Operator

Copyright © 2009, Oracle. All rights reserved.

Writing PL/SQL Executable Statements

114

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

• Character and date literals must be enclosed in single
quotation marks.

• Wrapped statements can continue over several lines.

• Numbers can be simple values or scientific notation.

(2E5 meaning 2x10 to the power of 5 = 200,000)

v_name := 'Henderson';
v_start_date := '12-DEC-2005';

v_quote := 'Now is the time for all good
men and women to come to the aid of
their country';

v_my_integer := 100;
v_my_sci_not := 2E5;

Assigning New Values to Variables

115

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

You are already familiar with functions in SQL statements. For
example:

These functions can also be used in PL/SQL procedural
statements. For example:

DECLARE
v_last_day DATE;

BEGIN
v_last_day := LAST_DAY(SYSDATE);
DBMS_OUTPUT.PUT_LINE(v_last_day);

END;

SELECT last_name, MONTHS_BETWEEN(SYSDATE, hiredate)
FROM employees;

SQL Functions in PL/SQL

116

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

• Available in both SQL and procedural statements:
– Single-row character
– Single-row number
– Date
– Data type conversion
– Miscellaneous functions

• Not available in procedural statements, but are available in
SQL statements:
– DECODE
– Group functions

SQL Functions in PL/SQL

Presenter
Presentation Notes
SQL Functions in PL/SQL

SQL functions help you to manipulate data; they fall into the following categories:

Number

Character

Conversion

Date

Miscellaneous

The following functions are not available in procedural statements:

DECODE

Group functions: AVG, MIN, MAX, COUNT, SUM, STDDEV, and VARIANCE. Group functions apply to groups of rows in a table and, therefore, are available only in SQL statements in a PL/SQL block.�The functions mentioned here are only a subset of the complete list.

117

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

ASCII LENGTH RPAD

CHR LOWER RTRIM

CONCAT LPAD SUBSTR

INITCAP LTRIM TRIM

INSTR REPLACE UPPER

v_desc_size INTEGER(5);
v_prod_description VARCHAR2(70):='You can use this
product with your radios for higher frequency';

-- get the length of the string in prod_description
v_desc_size:= LENGTH(v_prod_description);

v_capitol_name:= UPPER(v_capitol_name);

v_emp_name:= v_first_name||' '|| v_last_name;

Character Functions

118

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

ABS EXP ROUND

ACOS LN SIGN

ASIN LOG SIN

ATAN MOD TAN

COS POWER TRUNC

DECLARE
v_my_num BINARY_INTEGER :=-56664;
BEGIN
DBMS_OUTPUT.PUT_LINE(SIGN(v_my_num));
END;

DECLARE
v_median_age NUMBER(6,2);

BEGIN
SELECT median_age INTO v_median_age
FROM wf_countries WHERE country_id=27;

DBMS_OUTPUT.PUT_LINE(ROUND(v_median_age,0));
END;

Number Functions:

119

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

ADD_MONTHS MONTHS_BETWEEN

CURRENT_DATE ROUND

CURRENT_TIMESTAMP SYSDATE

LAST_DAY TRUNC

DECLARE
v_new_date DATE;
v_num_months NUMBER := 6;

BEGIN
v_new_date := ADD_MONTHS(SYSDATE,v_num_months);
DBMS_OUTPUT.PUT_LINE(v_new_date);

END;

DECLARE

v_no_months PLS_INTEGER:=0;

BEGIN

v_no_months := MONTHS_BETWEEN('31-JAN-06','31-MAY-05');

DBMS_OUTPUT.PUT_LINE(v_no_months);

END;

Date Functions:

120

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

In any programming language, converting one data type to
another is a common requirement. PL/SQL can handle such
conversions with scalar data types.
Implicit Conversions
In implicit conversions, PL/SQL attempts to convert data types
dynamically if they are mixed in a statement. Implicit
conversions can happen between many types in PL/SQL as
illustrated by the following chart.

DATE LONG NUMBER PLS_INTEGER VARCHAR2

DATE N/A X X

LONG N/A X

NUMBER X N/A X X

PLS_INTEGE

R

X X N/A X

VARCHAR2 X X X X N/A

Data Type Conversion

121

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Consider the following example:

In the example shown, the variable v_sal_increase is of type
VARCHAR2. While calculating the total salary, PL/SQL will first
convert v_sal_increase to NUMBER and then perform the
operation. The result of the operation will then be of the NUMBER
type. Also, the output will be converted to a string.

DECLARE
v_salary NUMBER(6):=6000;
v_sal_increase VARCHAR2(5):='1000';
v_total_salary v_salary%TYPE;

BEGIN
v_total_salary:= v_salary + v_sal_increase;
DBMS_OUTPUT.PUT_LINE(v_total_salary);

END;

Example of Implicit Conversion

122

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Although at first glance, implicit conversions may seem useful,
there are several drawbacks:
• Implicit conversions can be slower.
• When you use implicit conversions, you lose control over

your program because you are making an assumption about
how Oracle will handle the data. If Oracle changes the
conversion rules, then your code may be affected.

• Implicit conversion rules are dependent upon the
environment in which you are running. For example, the date
format varies depending on the language setting and
installation type. Code that uses implicit conversion may not
run on a different server or in a different language.

• Code that uses implicit conversion is harder to read and
understand.

Drawbacks of Implicit Conversions

123

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

It is the programmer's responsibility to ensure that values are
convertible. For instance, PL/SQL can convert the CHAR value
'02-JUN-92' to a DATE value but cannot convert the CHAR
value ‘Yesterday' to a DATE value. Similarly, PL/SQL cannot
convert a VARCHAR2 value containing alphabetic characters to a
NUMBER value.

Valid? Statement

Yes v_new_date DATE := '02-JUN-1992';

No v_new_date DATE := 'Yesterday';

Yes v_my_number NUMBER := '123';

No v_my_number NUMBER := 'abc';

Drawbacks of Implicit Conversions continued

124

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Explicit conversions convert values from one data type to another
by using built-in functions. Examples of conversion functions
include:

TO_NUMBER() ROWIDTONCHAR()

TO_CHAR() HEXTORAW()

TO_CLOB() RAWTOHEX()

CHARTOROWID() RAWTONHEX()

ROWIDTOCHAR() TO_DATE()

BEGIN
DBMS_OUTPUT.PUT_LINE(TO_CHAR(SYSDATE,'Month YYYY'));

END;

BEGIN
DBMS_OUTPUT.PUT_LINE(TO_DATE('April-1999','Month YYYY'));

END;

Explicit Conversions

125

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

DECLARE
v_a VARCHAR2(10) := '-123456';
v_b VARCHAR2(10) := '+987654';
v_c PLS_INTEGER;

BEGIN
v_c := TO_NUMBER(v_a) + TO_NUMBER(v_b);
DBMS_OUTPUT.PUT_LINE(v_c);

END;

v_date_of_joining DATE:= 'February 02,2000';

v_date_of_joining DATE:= TO_DATE('February 02,2000',
'Month DD, YYYY');

Fails

Examples of Explicit Conversions (continued)

Presenter
Presentation Notes
Note that the dbms_output.put_line procedure expects an argument of type character. In the above example, variable c is a number, therefore we should explicitly code: dbms_output.put_line(TO_CHAR(c));

126

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

• Logical
• Arithmetic
• Concatenation
• Parentheses to control the order

of operations

• Exponential operator (**)

Same as
in SQL

Operators in PL/SQL

127

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

The operations within an expression are performed in a particular
order depending on their precedence (priority).The following table
shows the default order of operations from high priority to low
priority:

Operator Operation

** Exponentiation

+, - Identity, negation

*, / Multiplication, division

+, -, || Addition, subtraction,
concatenation

=, <, >, <=, >=, <>, !=, ~=, ^=, IS NULL,

LIKE, BETWEEN, IN

Comparison

NOT Logical negation

AND Conjunction

OR Inclusion

Operators in PL/SQL

128

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Examples:
• Increment the counter for a loop.

• Set the value of a Boolean flag.

• Validate whether an employee number contains a value.

v_loop_count := v_loop_count + 1;

v_good_sal := v_sal BETWEEN 50000 AND 150000;

v_valid := (v_empno IS NOT NULL);

Operators in PL/SQL

Presenter
Presentation Notes
The second example could have been written as:

IF sal BETWEEN 50000 AND 150000 THEN

 good_sal := TRUE;

ELSE

 good_sal := FALSE;

END IF;

But assigning the result of the condition directly to the Boolean variable is much neater.

Copyright © 2009, Oracle. All rights reserved.

Nested Blocks and Variable Scope

130

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

The example shown in the slide has an outer (parent) block
(illustrated in blue) and a nested (child) block (illustrated in
red). The variable v_outer_variable is declared in the
outer block and the variable v_inner_variable is
declared in the inner block.

DECLARE
v_outer_variable VARCHAR2(20):='GLOBAL VARIABLE';

BEGIN
DECLARE

v_inner_variable VARCHAR2(20):='LOCAL VARIABLE';
BEGIN

DBMS_OUTPUT.PUT_LINE(v_inner_variable);
DBMS_OUTPUT.PUT_LINE(v_outer_variable);

END;
DBMS_OUTPUT.PUT_LINE(v_outer_variable);

END;

Nested Blocks

131

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

The scope of a variable is the block or blocks in which the variable is
accessible, ie it can be named and used. In PL/SQL, a variable’s scope
is the block in which it is declared plus all blocks nested within the
declaring block.
What are the scopes of the two variables declared in this example?

DECLARE
v_outer_variable VARCHAR2(20):='GLOBAL VARIABLE';

BEGIN
DECLARE

v_inner_variable VARCHAR2(20):='LOCAL VARIABLE';
BEGIN

DBMS_OUTPUT.PUT_LINE(v_inner_variable);
DBMS_OUTPUT.PUT_LINE(v_outer_variable);

END;
DBMS_OUTPUT.PUT_LINE(v_outer_variable);

END;

Variable Scope

Presenter
Presentation Notes
Answer: The scope of outer_variable includes both the outer and inner blocks. The scope of inner_variable includes only the inner block. It is valid to refer to outer_variable within the inner block, but referencing inner_variable within the outer block would return an error.

132

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

DECLARE
v_father_name VARCHAR2(20):='Patrick';
v_date_of_birth DATE:='20-Apr-1972';

BEGIN
DECLARE

v_child_name VARCHAR2(20):='Mike';
BEGIN

DBMS_OUTPUT.PUT_LINE('Father''s Name: '||v_father_name);
DBMS_OUTPUT.PUT_LINE('Date of Birth: '||v_date_of_birth);
DBMS_OUTPUT.PUT_LINE('Child''s Name: '||v_child_name);

END;
DBMS_OUTPUT.PUT_LINE('Date of Birth: '||v_date_of_birth);

END;

Examine the following code. What is the scope of each of
the variables?

133

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Variables declared in a PL/SQL block are considered local to
that block and global to all its subblocks. v_outer_variable
is local to the outer block but global to the inner block. When
you access this variable in the inner block, PL/SQL first looks for
a local variable in the inner block with that name. If there are no
similarly named variables, PL/SQL looks for the variable in the
outer block.

DECLARE
v_outer_variable VARCHAR2(20):='GLOBAL VARIABLE';

BEGIN
DECLARE

v_inner_variable VARCHAR2(20):='LOCAL VARIABLE';
BEGIN

DBMS_OUTPUT.PUT_LINE(v_inner_variable);
DBMS_OUTPUT.PUT_LINE(v_outer_variable);

END;
DBMS_OUTPUT.PUT_LINE(v_outer_variable);

END;

Local and Global Variables

Presenter
Presentation Notes
Instructor Notes

 Therefore the scope of a variable consists of all the blocks in which the variable is either local (the declaring block) or global (nested blocks within the declaring block).

134

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

The v_inner_variable variable is local to the inner block and
is not global because the inner block does not have any nested
blocks. This variable can be accessed only within the inner block.
If PL/SQL does not find the variable declared locally, it looks
upward in the declarative section of the parent blocks. PL/SQL
does not look downward in the child blocks.

DECLARE
v_outer_variable VARCHAR2(20):='GLOBAL VARIABLE';
BEGIN
DECLARE
v_inner_variable VARCHAR2(20):='LOCAL VARIABLE';

BEGIN
DBMS_OUTPUT.PUT_LINE(v_inner_variable);
DBMS_OUTPUT.PUT_LINE(v_outer_variable);

END;
DBMS_OUTPUT.PUT_LINE(v_outer_variable);
END;

Local and Global Variables continued

135

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

The variables v_father_name and v_date_of_birth are
declared in the outer block. They are local to the outer block and
global to the inner block. Their scope includes both blocks.

The variable v_child_name is declared in the inner (nested)
block. This variable is accessible only within the nested block and
is not accessible in the outer block.

DECLARE
v_father_name VARCHAR2(20):='Patrick';
v_date_of_birth DATE:='20-Apr-1972';

BEGIN
DECLARE

v_child_name VARCHAR2(20):='Mike';
...

Variable Scope

136

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

You cannot declare two variables with the same name in the
same block. However, you can declare variables with the same
name in two different blocks (nested blocks). It is not a good
practice because it can make reading the code confusing. The
two items represented by the same name are distinct, and any
change in one does not affect the other.

Which v_date_of_birth will be referenced in the
DBMS_OUTPUT.PUT_LINE statement?

DECLARE
v_father_name VARCHAR2(20):='Patrick';
v_date_of_birth DATE:='20-Apr-1972';

BEGIN
DECLARE

v_child_name VARCHAR2(20):='Mike';
v_date_of_birth DATE:='12-Dec-2002';

BEGIN
DBMS_OUTPUT.PUT_LINE('Date of Birth: '||v_date_of_birth);
...

Variable Naming

137

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

The visibility of a variable is the portion of the program where
the variable can be accessed without using a qualifier. What is
the visibility of each of the variables?

DECLARE
v_father_name VARCHAR2(20):='Patrick';
v_date_of_birth DATE:='20-Apr-1972';
BEGIN
DECLARE
v_child_name VARCHAR2(20):='Mike';
v_date_of_birth DATE:='12-Dec-2002';

BEGIN
DBMS_OUTPUT.PUT_LINE('Father''s Name: '||v_father_name);
DBMS_OUTPUT.PUT_LINE('Date of Birth: '||v_date_of_birth);
DBMS_OUTPUT.PUT_LINE('Child''s Name: '||v_child_name);

END;
DBMS_OUTPUT.PUT_LINE('Date of Birth: '||v_date_of_birth);
END;

1

2

Variable Visibility

Presenter
Presentation Notes
Variable Visibility

Observe the code in the executable section of the PL/SQL block. You can print the father’s name, the child’s name, and the date of birth. Only the child’s date of birth can be printed here because the father’s date of birth is not visible here.

The father’s date of birth is visible here and therefore can be printed.

138

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

The v_date_of_birth variable declared in the outer block has
scope even in the inner block. This variable is visible in the outer
block. However, it is not visible in the inner block because the
inner block has a local variable with the same name. The
v_father_name variable is visible in the inner and outer
blocks. The v_child_name variable is visible only in the inner
block.

What if we want to reference the outer block’s
v_date_of_birth within the inner block?

DECLARE
v_father_name VARCHAR2(20):='Patrick';
v_date_of_birth DATE:='20-Apr-1972';

BEGIN
DECLARE

v_child_name VARCHAR2(20):='Mike';
v_date_of_birth DATE:='12-Dec-2002';

…

Variable Visibility continued

139

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

A qualifier is a label given to a block. You can use this qualifier to
access the variables which have scope but are not visible. In this
example, the outer block has the label, <<outer>>.

Labeling is not limited to the outer block; you can label any block.

<<outer>>
DECLARE
v_father_name VARCHAR2(20):='Patrick';
v_date_of_birth DATE:='20-Apr-1972';
BEGIN
DECLARE
v_child_name VARCHAR2(20):='Mike';
v_date_of_birth DATE:='12-Dec-2002';

…

Qualifying an Identifier

140

Semester 1 MidTerm Review

Copyright © 2009, Oracle. All rights reserved.

Using the outer label to qualify the v_date_of_birth identifier,
you can now print father’s date of birth in the inner block.

<<outer>>
DECLARE
v_father_name VARCHAR2(20):='Patrick';
v_date_of_birth DATE:='20-Apr-1972';
BEGIN
DECLARE
v_child_name VARCHAR2(20):='Mike';
v_cate_of_birth DATE:='12-Dec-2002';

BEGIN
DBMS_OUTPUT.PUT_LINE('Father''s Name: '||v_father_name);
DBMS_OUTPUT.PUT_LINE('Date of Birth: ' ||outer.v_date_of_birth);
DBMS_OUTPUT.PUT_LINE('Child''s Name: '||v_child_name);
DBMS_OUTPUT.PUT_LINE('Date of Birth: '||v_date_of_birth);

END;
END;

Father’s Name: Patrick
Date of Birth: 20-APR-72
Child’s Name: Mike
Date of Birth: 12-DEC-02

Statement processed.

Qualifying an Identifier continued

Presenter
Presentation Notes
We could also label the inner block but this is not needed here.

	Semester 1 Mid Term Review
	Semester 1 Mid Term Review
	Introduction to PL/SQL
	What is PL/SQL?�
	What is Structured Query Language (SQL)?�
	PL/SQL extends SQL with Procedural Logic:�
	Procedural Constructs:�
	Procedural Constructs:�
	Benefits of PL/SQL
	Benefit 1: Integration of procedural constructs with SQL
	Benefit 2: Modularized program development�
	Benefit 2: Modularized program development (continued)�
	Benefit 2: Modularized program development (continued)�
	Benefit 3: Improved performance�
	Benefit 4: Integration with Oracle tools�
	Benefit 5: Portability
	Benefit 6: Exception handling
	Creating PL/SQL Blocks
	PL/SQL Block Structure�
	PL/SQL Block Structure (continued)�
	PL/SQL Block Structure (continued)�
	Block Types
	Anonymous Blocks�
	Examples of Anonymous Blocks
	Subprograms
	Examples of Subprograms:�
	SQL Commands
	Review of SQL SELECT Statements
	Selecting Data
	Sorting�
	Calculations�
	Column aliases�
	Concatenation�
	DISTINCT�
	DISTINCT�
	BETWEEN...AND�
	IN�
	LIKE�
	Review of SQL Single-Row Functions
	Case Manipulation Functions�
	Case Manipulation Functions�
	Character Manipulation Functions
	Character Manipulation Functions�
	Number Functions
	Number Functions �
	Conversion Functions
	Conversion Functions�
	Conversion Functions
	Conversion Functions
	Date Functions
	Date Functions
	Date Functions�
	General Functions
	General Functions �
	General Functions
	Using Variables in PL/SQL
	Use of Variables �
	Handling Variables in PL/SQL�
	Declaring and Initializing PL/SQL Variables�
	Declaring and Initializing Variables:�
	Declaring and Initializing Variables: �
	Assigning Values in the Executable Section�
	Assigning Values in the Executable Section�
	Passing Variables as Parameters to PL/SQL Subprograms
	Assigning Variables to PL/SQL Subprogram Output
	Recognizing PL/SQL Lexical Units
	Lexical Units in a PL/SQL Block�
	Identifiers
	Identifiers�
	Properties of an Identifier�
	Valid and Invalid Identifiers�
	Reserved Words
	Reserved Words
	Delimiters are symbols that have special meaning to the Oracle database.�
	Literals�
	Character Literals�
	Numeric Literals�
	Comments
	Recognizing Data Types
	PL/SQL Data Types
	Scalar Data Types�
	Scalar Data Types: Character (or String)�
	Scalar Data Types: Number�
	Scalar Data Types: Date�
	Scalar Data Types: Date (continued)�
	Composite Data Types�
	LOB Data Type�
	LOB Data Type Columns�
	Using Scalar Data Types
	Declaring Character Variables�
	Declaring Date Variables�
	Declaring Boolean Variables
	Guidelines for Declaring and Initializing PL/SQL Variables�
	Anchoring Variables with the %TYPE Attribute�
	Advantages of the %TYPE Attribute�
	Review of SQL Joins
	Equijoin�
	Nonequijoin�
	Nonequijoin�
	Outer Join�
	Cartesian Product�
	Review of SQL Group Functions�and�Subqueries
	Group Functions�
	Group Functions
	GROUP BY�
	HAVING�
	Subqueries�
	Group Functions and Subqueries�
	Group Functions
	Multiple-Row Subqueries�
	ANY Operator�
	ALL Operator
	Writing PL/SQL Executable Statements
	Assigning New Values to Variables�
	SQL Functions in PL/SQL�
	SQL Functions in PL/SQL�
	Character Functions�
	Number Functions:
	Date Functions:�
	Data Type Conversion�
	Example of Implicit Conversion
	Drawbacks of Implicit Conversions
	Drawbacks of Implicit Conversions continued
	Explicit Conversions
	Examples of Explicit Conversions (continued)�
	Operators in PL/SQL�
	Operators in PL/SQL�
	Operators in PL/SQL�
	Nested Blocks and Variable Scope
	Nested Blocks�
	Variable Scope�
	Examine the following code. What is the scope of each of the variables? �
	Local and Global Variables�
	Local and Global Variables continued�
	Variable Scope
	Variable Naming�
	Variable Visibility�
	Variable Visibility continued�
	Qualifying an Identifier
	Qualifying an Identifier continued�

