
Copyright © 2009, Oracle. All rights reserved.

Nested Blocks and Variable Scope

2

Nested Blocks and Variable Scope

Copyright © 2009, Oracle. All rights reserved.

What Will I Learn?
In this lesson, you will learn to:

• Understand the scope and visibility of
variables

• Write nested blocks and qualify variables with
labels

• Understand the scope of an exception
• Describe the effect of exception propagation

in nested blocks

3

Nested Blocks and Variable Scope

Copyright © 2009, Oracle. All rights reserved.

Why Learn It?
A large, complex block can be hard to
understand. You can break it down into
smaller blocks that are nested one inside the
other, making the code easier to read and
correct.

When you nest blocks, the declared variables
might not be available depending on their
scope and visibility. You can make invisible
variables available by using labels.

4

Nested Blocks and Variable Scope

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
Nested Blocks
PL/SQL is a block-structured language. The
basic units (procedures, functions, and
anonymous blocks) are logical blocks, which can
contain any number of nested sub-blocks. Each
logical block corresponds to a problem to be
solved.

5

Nested Blocks and Variable Scope

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
Nested Blocks (continued)
The example shown in the slide has an outer (parent) block
(illustrated in normal text) and a nested (child) block (illustrated in
bold text). The variable v_outer_variable is declared in the
outer block and the variable v_inner_variable is declared in
the inner block.

DECLARE
v_outer_variable VARCHAR2(20):='GLOBAL VARIABLE';

BEGIN
DECLARE

v_inner_variable VARCHAR2(20):='LOCAL
VARIABLE';

BEGIN
DBMS_OUTPUT.PUT_LINE(v_inner_variable);
DBMS_OUTPUT.PUT_LINE(v_outer_variable);

END;
DBMS_OUTPUT.PUT_LINE(v_outer_variable);

END;

Presenter
Presentation Notes
The next topic to cover is nesting blocks. Nesting is a concept that is very familiar to programmers. It’s a common technique where each logical block corresponds to a problem to be solved. You will be encountering it often during this course. In this example, you can see a DECLARE, BEGIN, and END in normal text and then in bold within the BEGIN statement you can see another DECLARE, BEGIN, and END. Using blocks makes PL/SQL programs easier to read and it makes it easier to correct problems. A large complex block may be hard to understand. We can break it down into smaller blocks that are nested one inside the other.

6

Nested Blocks and Variable Scope

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
Variable Scope
The scope of a variable is the block or blocks in which the
variable is accessible, that is, it can be named and used. In
PL/SQL, a variable’s scope is the block in which it is declared
plus all blocks nested within the declaring block. What are the
scopes of the two variables declared in this example?

DECLARE
v_outer_variable VARCHAR2(20):='GLOBAL VARIABLE';

BEGIN
DECLARE

v_inner_variable VARCHAR2(20):='LOCAL VARIABLE';
BEGIN

DBMS_OUTPUT.PUT_LINE(v_inner_variable);
DBMS_OUTPUT.PUT_LINE(v_outer_variable);

END;
DBMS_OUTPUT.PUT_LINE(v_outer_variable);

END;

Presenter
Presentation Notes
Variable scope is the idea of determining where a variable is allowed to be used within a program. Because PL/SQL uses nesting in blocks, we can declare the variables we need for use within a given block. The variable is assigned a memory location used in the block and when the block finishes, the variable and the memory location are released. In PL/SQL, a variable scope is the block in which it is declared plus all blocks nested within the declaring block. This will become more apparent as we look at examples.

7

Nested Blocks and Variable Scope

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
Variable Scope
Examine the following code. What is the scope of each of the
variables?

DECLARE
v_father_name VARCHAR2(20):='Patrick';
v_date_of_birth DATE:='20-Apr-1972';

BEGIN
DECLARE

v_child_name VARCHAR2(20):='Mike';
BEGIN

DBMS_OUTPUT.PUT_LINE('Father''s Name: '||v_father_name);
DBMS_OUTPUT.PUT_LINE('Date of Birth: '||v_date_of_birth);
DBMS_OUTPUT.PUT_LINE('Child''s Name: '||v_child_name);

END;
DBMS_OUTPUT.PUT_LINE('Date of Birth: '||v_date_of_birth);

END;

8

Nested Blocks and Variable Scope

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
Local and Global Variables
Variables declared in a PL/SQL block are considered local to that
block and global to all its subblocks. v_outer_variable is local
to the outer block but global to the inner block. When you access
this variable in the inner block, PL/SQL first looks for a local
variable in the inner block with that name. If there are no similarly
named variables, PL/SQL looks for the variable in the outer block.

DECLARE
v_outer_variable VARCHAR2(20):='GLOBAL VARIABLE';

BEGIN
DECLARE

v_inner_variable VARCHAR2(20):='LOCAL
VARIABLE';

BEGIN
DBMS_OUTPUT.PUT_LINE(v_inner_variable);
DBMS_OUTPUT.PUT_LINE(v_outer_variable);

END;
DBMS_OUTPUT.PUT_LINE(v_outer_variable);

END;

Presenter
Presentation Notes
Variables can have either local or global scope. A variable is considered local to the block in which it is declared. It is considered global to any blocks nested within the declaring block. When naming variables, you cannot declare two variables with the same name in the same block. However, you can declare variables with the same name in two different blocks. These two items represented by the same name are distinct, and any change in one does not affect the other. This naming can cause problems, though. It’s very important to understand the limitations of naming two variables with the same name.

9

Nested Blocks and Variable Scope

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
Local and Global Variables
The v_inner_variable variable is local to the inner block and
is not global because the inner block does not have any nested
blocks. This variable can be accessed only within the inner block.
If PL/SQL does not find the variable declared locally, it looks
upward in the declarative section of the parent blocks. PL/SQL
does not look downward in the child blocks.

DECLARE
v_outer_variable VARCHAR2(20):='GLOBAL VARIABLE';

BEGIN
DECLARE

v_inner_variable VARCHAR2(20):='LOCAL
VARIABLE';

BEGIN
DBMS_OUTPUT.PUT_LINE(v_inner_variable);
DBMS_OUTPUT.PUT_LINE(v_outer_variable);

END;
DBMS_OUTPUT.PUT_LINE(v_outer_variable);

END;

10

Nested Blocks and Variable Scope

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
Variable Scope
The variables v_father_name and v_date_of_birth are
declared in the outer block. They are local to the outer block and
global to the inner block. Their scope includes both blocks.

The variable v_child_name is declared in the inner (nested)
block. This variable is accessible only within the nested block and
is not accessible in the outer block.

DECLARE
v_father_name VARCHAR2(20):='Patrick';
v_date_of_birth DATE:='20-Apr-1972';

BEGIN
DECLARE

v_child_name VARCHAR2(20):='Mike';
...

11

Nested Blocks and Variable Scope

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
Variable Naming
You cannot declare two variables with the same name in the
same block. However, you can declare variables with the same
name in two different blocks (nested blocks). The two items
represented by the same name are distinct, and any change in
one does not affect the other.

12

Nested Blocks and Variable Scope

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
Variable Visibility
What if the same name is used for two variables, one in each of
the blocks? In this example, the variable v_date_of_birth is
declared twice.

Which v_date_of_birth is referenced in the
DBMS_OUTPUT.PUT_LINE statement?

DECLARE
v_father_name VARCHAR2(20):='Patrick';
v_date_of_birth DATE:='20-Apr-1972';

BEGIN
DECLARE

v_child_name VARCHAR2(20):='Mike';
v_date_of_birth DATE:='12-Dec-2002';

BEGIN
DBMS_OUTPUT.PUT_LINE('Date of Birth:'

||v_date_of_birth);
...

13

Nested Blocks and Variable Scope

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
Variable Visibility
The visibility of a variable is the portion of the program where the
variable can be accessed without using a qualifier. What is the
visibility of each of the variables?

DECLARE
v_father_name VARCHAR2(20):='Patrick';
v_date_of_birth DATE:='20-Apr-1972';

BEGIN
DECLARE

v_child_name VARCHAR2(20):='Mike';
v_date_of_birth DATE:='12-Dec-2002';

BEGIN
DBMS_OUTPUT.PUT_LINE('Father''s Name: '||v_father_name);
DBMS_OUTPUT.PUT_LINE('Date of Birth:
'||v_date_of_birth);
DBMS_OUTPUT.PUT_LINE('Child''s Name: '||v_child_name);

END;
DBMS_OUTPUT.PUT_LINE('Date of Birth: '||v_date_of_birth);

END;

1

2

14

Nested Blocks and Variable Scope

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
Variable Visibility
The v_date_of_birth variable declared in the outer block has
scope even in the inner block. This variable is visible in the outer
block. However, it is not visible in the inner block because the inner
block has a local variable with the same name. The
v_father_name variable is visible in the inner and outer blocks.
The v_child_name variable is visible only in the inner block.

What if you want to reference the outer block’s v_date_of_birth
within the inner block?

DECLARE
v_father_name VARCHAR2(20):='Patrick';
v_date_of_birth DATE:='20-Apr-1972';

BEGIN
DECLARE

v_child_name VARCHAR2(20):='Mike';
v_date_of_birth DATE:='12-Dec-2002';

…

Presenter
Presentation Notes
This slide discusses variable visibility. In the outer block there two variables are declared: v_father_name and v_date_of_birth. In the inner block there are also two variables declared: v_child_name and v_date_of_birth. v_child_name is only visible in the inner block, while v_father_name is visible to both the inner and outer blocks. Notice, though, that there are two v_date_of_birth variables: one in the outer block and one in the inner block. These two variables are independent of each other. You can imagine if the inner block needs to know the birth date of the father declared in the outer block, it cannot see it since a local variable of the same name exists, and the inner block will assume v_date_of_birth to be the birth date of the child declared in the inner block. So, how can you see the father’s birth date?

15

Nested Blocks and Variable Scope

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
Qualifying an Identifier
A qualifier is a label given to a block. You can use this qualifier to
access the variables that have scope but are not visible. In this
example, the outer block has the label, <<outer>>.

Labeling is not limited to the outer block; you can label any block.

<<outer>>
DECLARE
v_father_name VARCHAR2(20):='Patrick';
v_date_of_birth DATE:='20-Apr-1972';

BEGIN
DECLARE

v_child_name VARCHAR2(20):='Mike';
v_date_of_birth DATE:='12-Dec-2002';

…

16

Nested Blocks and Variable Scope

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
Qualifying an Identifier
Using the outer label to qualify the v_date_of_birth identifier,
you can now print the father’s date of birth in the inner block.
<<outer>>
DECLARE
v_father_name VARCHAR2(20):='Patrick';
v_date_of_birth DATE:='20-Apr-1972';

BEGIN
DECLARE

v_child_name VARCHAR2(20):='Mike';
v_date_of_birth DATE:='12-Dec-2002';

BEGIN
DBMS_OUTPUT.PUT_LINE('Father''s Name: '||v_father_name);
DBMS_OUTPUT.PUT_LINE('Date of Birth: '
||outer.v_date_of_birth);
DBMS_OUTPUT.PUT_LINE('Child''s Name: '||v_child_name);
DBMS_OUTPUT.PUT_LINE('Date of Birth: '||v_date_of_birth);

END;
END;

Father’s Name: Patrick
Date of Birth: 20-APR-72
Child’s Name: Mike
Date of Birth: 12-DEC-02

Statement processed.

Presenter
Presentation Notes
The only way we can see v_date_of_birth listed in the outer block from the inner block is to label the outer block. Any block of code can be labeled. The example in this slide illustrates how to label a block. The outer block is called “outer”, and is surrounded by a pair of less than (<<) and greater than (>>) symbols. When naming the outer variable in the inner block, we prefix it with the block’s label. So, to access v_date_of_birth using the father’s date of birth within the inner block, you would prefix it with the word, outer. The full labeled variable name becomes outer.v_date_of_birth and the value, 20-April-1972, is visible and usable.

17

Nested Blocks and Variable Scope

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
Scope of Exceptions in Nested Blocks
An exception is a programming section that catches errors to halt
an abrupt end of the program.
You can deal with an exception by:
• Handling it (“trapping it”) in the block in which it occurs, or
• Propagating it to the calling environment

Exception
raised

Is the
exception
trapped?

yes

no

Handle with
exception
handler

Propagate
to calling

environment

Presenter
Presentation Notes
Although Exception Handling will be dealt with in a lesson later on, it’s important to understand a little bit about how this works within the discussion of scoping and blocks. An exception section in a PL/SQL block is a section that deals with how to handle unexpected errors in the program execution. An exception can be handled by trapping it in the block in which it occurs. In other words, if the exception section describes how to handle the exception, than the code will continue normally. If it doesn’t, than the exception will be propagated outward. If it’s to another block, it will go to the outer block, if there is no further outer block, it will go to the application where the PL/SQL code is running. For now, just remember that the exception section is the programming section that catches errors to forestall an abrupt stop to the program. Exceptions can be propagated and handled at any level of a nested series of code.

18

Nested Blocks and Variable Scope

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
Trapping Exceptions with a Handler
Include an EXCEPTION section in your PL/SQL program to trap
exceptions. If the exception is raised in the executable section of
the block, processing is handled by the corresponding exception
handler in the exception section of the same block. If PL/SQL
successfully handles the exception, then the exception does not
propagate to the enclosing block or to the calling environment.
The PL/SQL block terminates successfully.

Exception
raised

Is the
exception
trapped?

yes
Execute statements
in the EXCEPTION

section

Terminate
gracefully

no

Propagate
to calling

environment

19

Nested Blocks and Variable Scope

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
Handling Exceptions in an Inner Block
In this example, an error occurs during the execution of
the inner block. The inner block’s EXCEPTION section
deals with the exception successfully, and PL/SQL
considers that this exception is now finished. The outer
block resumes execution as normal.

BEGIN -- outer block
...

BEGIN -- inner block
... -- exception_name occurs here
...
EXCEPTION
WHEN exception_name THEN -- handled here
...

END; -- inner block terminates successfully

... -- outer block continues execution
END;

20

Nested Blocks and Variable Scope

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
Propagating Exceptions to an Outer Block
If the exception is raised in the executable section of the inner
block and there is no corresponding exception handler, the
PL/SQL block terminates with failure and the exception is
propagated to an enclosing block.

Terminate
abruptly

Propagate
the

exception
Exception

raised

Is the
exception
trapped?

yes
Execute statements
in the EXCEPTION

section

Terminate
gracefully

no

21

Nested Blocks and Variable Scope

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
Propagating Exceptions to an Outer Block (continued)
In this example, an error occurs during the execution of the inner block
The inner block’s EXCEPTION section does not deal with the exception
The inner block terminates unsuccessfully and PL/SQL passes the
exception to the outer block.The outer block’s EXCEPTION section
successfully handles the exception.

BEGIN -- outer block
...
BEGIN -- inner block
... -– exception_name occurs here
...
END; -- inner block terminates unsuccessfully

... -- Remaining code in outer block’s executable

... -- section is skipped
EXCEPTION
WHEN exception_name THEN – outer block handles the exception
...

END;

22

Nested Blocks and Variable Scope

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
Propagating Exceptions in a Subblock
If a PL/SQL raises an exception and the current block does not
have a handler for that exception, the exception propagates to
successive enclosing blocks until it finds a handler.
When the exception propagates to an enclosing block, the
remaining executable actions in that block are bypassed.
One advantage of this behavior is that you can enclose
statements that require their own exclusive error handling in their
own block, while leaving more general exception handling to the
enclosing block.

If none of these blocks handle the exception, an unhandled
exception occurs in the host environment (for example
Application Express).

23

Nested Blocks and Variable Scope

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
Terminology
Key terms used in this lesson include:

Variable scope
Variable visibility
Qualifier
Exception handling
Exception propagating

Presenter
Presentation Notes

24

Nested Blocks and Variable Scope

Copyright © 2009, Oracle. All rights reserved.

Summary
In this lesson, you have learned how to:

• Understand the scope and visibility of
variables

• Write nested blocks and qualify variables
with labels

• Understand the scope of an exception
• Describe the effect of exception propagation

in nested blocks

25

Nested Blocks and Variable Scope

Copyright © 2009, Oracle. All rights reserved.

Try It / Solve It
The exercises in this lesson cover the
following topics:
• Understanding the scope and visibility

of variables
• Writing nested blocks and qualifying

variables with labels
• Understanding the scope of an

exception
• Describing the effect of exception

propagation in nested blocks

	Nested Blocks and Variable Scope
	What Will I Learn?
	Why Learn It?
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Summary	
	Try It / Solve It

