
Copyright © 2008, Oracle. All rights reserved.

Managing Package Concepts

2

Managing Package Concepts

Copyright © 2008, Oracle. All rights reserved.

What Will I Learn?
In this lesson, you will learn to:
• Explain the difference between public

and private package constructs
• Designate a package construct as

either public or private
• Specify the appropriate syntax to drop

packages
• Identify views in the Data Dictionary

that manage packages
• Identify guidelines for using packages

3

Managing Package Concepts

Copyright © 2008, Oracle. All rights reserved.

Why Learn It?
How would you create a procedure or
function that cannot be invoked directly
from an application (maybe for security
reasons), but can be invoked only from
other PL/SQL subprograms?

You would create a private subprogram
within a package.

In this lesson, you learn how to create
private subprograms. You also learn how
to drop packages, and how to view them in
the Data Dictionary. You also learn about
the additional benefits of packages.

4

Managing Package Concepts

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Components of a PL/SQL Package

• Public components are declared in the
package specification. You can invoke
public components from any calling
environment, provided the user has
been granted EXECUTE privilege on the
package.

• Private components are declared only in
the package body and can be
referenced only by other (public or
private) constructs within the same
package body. Private components can
reference the package’s public
components.

Package
specification

Package
body

Public

Private

5

Managing Package Concepts

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Visibility of Package Components

The visibility of a component describes whether that component
can be seen, that is, referenced and used by other components
or objects. Visibility of components depends on where they are
declared. You can declare components in three places within a
package:
• Globally in the specification: These components are visible
throughout the package body, and by the calling environment
• Locally in the package body, but outside any subprogram:
These components are visible throughout the package body, but
not by the calling environment
• Locally in the package body, within a specific subprogram:
These components are visible only within that subprogram.

6

Managing Package Concepts

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Global/Local Compared to Public/Private:

Remember that public components declared in the specification
are visible to the calling environment, while private components
declared only within the body are not. Therefore all public
components are global, while all private components are local.

So what’s the difference between public and global, and between
private and local?

The answer is none, really. They are the same thing! But you
use public/private when describing procedures and functions, and
global/local when describing other components, such as
variables, constants, and cursors.

7

Managing Package Concepts

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Visibility of Global (Public) Components
Globally declared components are visible internally and externally
to the package, such as:
• A global variable declared in a package specification can be

referenced and changed outside the package (for example,
global_var can be referenced externally).

• A public subprogram declared in the specification can be
called from external code sources (for example,
Procedure A can be called from an environment external to
the package).

Package
specification

Procedure A;

global_var

External
code

8

Managing Package Concepts

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Visibility of Local (Private) Components
Local components are visible only within the structure in which
they are declared, such as the following:
• Local variables defined within a specific subprogram can be

referenced only within that subprogram, and are not visible
to external components.

• Local variables that are declared in a package body can be
referenced by other components in the same package body.
They are not visible to any subprograms or objects that are
outside the package.

Package
body

Procedure A IS

BEGIN
…
END;

Procedure B IS
BEGIN … END;

variable_2

variable_1

9

Managing Package Concepts

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Note: Private subprograms, such as Procedure B, can be
invoked only with public subprograms, such as Procedure A, or
other private package constructs.

Package
specification

Package
body

Procedure A;

global_var

Procedure A IS

BEGIN
…
END;

Procedure B IS
BEGIN … END;

variable_2

variable_1

External
code

10

Managing Package Concepts

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Example of Package Specification: salary_pkg:

You have a business rule that no employee’s salary can be
increased by more than 20 percent at one time.

• g_max_sal_raise is a global constant initialized to 0.20.
• update_sal is a public procedure that updates an

employee’s salary.

CREATE OR REPLACE PACKAGE salary_pkg
IS
g_max_sal_raise CONSTANT NUMBER := 0.20;
PROCEDURE update_sal

(p_employee_id employees.employee_id%TYPE,
p_new_salary employees.salary%TYPE);

END salary_pkg;

11

Managing Package Concepts

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Example of Package Body: salary_pkg:

CREATE OR REPLACE PACKAGE BODY salary_pkg IS
FUNCTION validate_raise -- private function
(p_old_salary employees.salary%TYPE,
p_new_salary employees.salary%TYPE)

RETURN BOOLEAN IS
BEGIN
IF p_new_salary >

(p_old_salary * (1 + g_max_sal_raise)) THEN
RETURN FALSE;

ELSE
RETURN TRUE;

END IF;
END validate_raise;

-- next slide shows the public procedure

12

Managing Package Concepts

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
...
PROCEDURE update_sal -- public procedure
(p_employee_id employees.employee_id%TYPE,
p_new_salary employees.salary%TYPE)

IS v_old_salary employees.salary%TYPE; -- local variable
BEGIN
SELECT salary INTO v_old_salary FROM employees

WHERE employee_id = p_employee_id;
IF validate_raise(v_old_salary, p_new_salary) THEN

UPDATE employees SET salary = p_new_salary
WHERE employee_id = p_employee_id;

ELSE
RAISE_APPLICATION_ERROR(-20210, 'Raise too high');

END IF;
END update_sal;

END salary_pkg;

13

Managing Package Concepts

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Invoking Package Subprograms
After the package is stored in the database, you can invoke
subprograms stored within the same package or stored in
another package.

Within the same
package

Specify the subprogram name

You can fully qualify a subprogram
within the same package, but this is
optional

External to the
package

Fully qualify the (public) subprogram
with its package name

Subprogram;

package_name.subprogram;

package_name.subprogram;

14

Managing Package Concepts

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Which of the following invocations from outside the salary_pkg
are valid (assuming the caller either owns or has EXECUTE
priviledge on the package)?

DECLARE

v_bool BOOLEAN;

v_number NUMBER;

BEGIN

salary_pkg.update_sal(100,25000); -- 1

update_sal(100,25000); -- 2

v_bool := salary_pkg.validate_raise(24000,25000); -- 3

v_number := salary_pkg.g_max_sal_raise; -- 4

v_number := salary_pkg.v_old_salary; -- 5

END;

15

Managing Package Concepts

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Removing Packages

• To remove the entire package, specification, and body, use
the following syntax:

• To remove only the package body, use the following syntax:

• You cannot remove the package specification on its own.

DROP PACKAGE package_name;

DROP PACKAGE BODY package_name;

16

Managing Package Concepts

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Viewing Packages in the Data Dictionary
The source code for PL/SQL packages is maintained and is
viewable through the USER_SOURCE and ALL_SOURCE tables in
the Data Dictionary.
• To view the package specification, use:

• To view the package body, use:

SELECT text
FROM user_source
WHERE name = 'SALARY_PKG' AND type = 'PACKAGE'
ORDER BY line;

SELECT text
FROM user_source
WHERE name = 'SALARY_PKG' AND type = 'PACKAGE BODY'
ORDER BY line;

17

Managing Package Concepts

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Guidelines for Writing Packages
• Construct packages for general use.
• Create the package specification before the body.
• The package specification should contain only those

constructs that you want to be public/global.
• Only recompile the package body, if possible, because

changes to the package specification require recompilation
of all programs that call the package.

• The package specification should contain as few constructs
as possible.

18

Managing Package Concepts

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Advantages of Using Packages
• Modularity: Encapsulating related constructs
• Easier maintenance: Keeping logically related functionality

together
• Easier application design: Coding and compiling the

specification and body separately
• Hiding information:

– Only the declarations in the package specification are visible
and accessible to applications.

– Private constructs in the package body are hidden and
inaccessible.

– All coding is hidden in the package body.

19

Managing Package Concepts

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Advantages of Using Packages
• Added functionality: Persistency of variables and cursors
• Better performance:

– The entire package is loaded into memory when the package
is first referenced.

– There is only one copy in memory for all users.
– The dependency hierarchy is simplified.

• Overloading: Multiple subprograms having the same name.

Persistency and Overloading are covered in later lessons in this
section.

Dependencies are covered in a later section of this course.

20

Managing Package Concepts

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Terminology
Key terms used in this lesson include:

Public components
Private components
Visibility

21

Managing Package Concepts

Copyright © 2008, Oracle. All rights reserved.

Summary
In this lesson, you learned to:
• Explain the difference between public

and private package constructs
• Designate a package construct as

either public or private
• Specify the appropriate syntax to drop

packages
• Identify views in the data dictionary

that manage packages
• Identify guidelines for using packages

22

Managing Package Concepts

Copyright © 2008, Oracle. All rights reserved.

Try It / Solve It
The exercises in this lesson cover
the following topics:
• Designating a package

construct as either public or
private

• Invoking a package construct
• Identifying views in the data

dictionary to manage packages
• Dropping packages
• Identifying guidelines and

benefits of packages

	Managing Package Concepts
	What Will I Learn?
	Why Learn It?
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Summary
	Try It / Solve It

