
Oracle Academy
Introduction to Database Programming with PL/SQL

Instructor Resource Guide

INSTRUCTOR NOTES FOR SLIDES

SECTION 2 LESSON 1 - Using Variables in PL/SQL

Slide 1: Using Variables in PL/SQL
No instructor notes for this slide

Slide 2: What Will I Learn?
No instructor notes for this slide

Slide 3: Why Learn It?
A PL/SQL program consists of a sequence of statements, each made up of one or more
lines of text. Each reserved word, delimiter, identifier, literal, and comment is made from
various combinations of characters from a specific character set.

Type
Letters
Symbols
Digits
whitespace

Characters
A-Z, a-z
0-9
~!@#$%()_-+=|:;”’<> ,.?/^
Tab, space, newline, carriage return

Slide 4: Tell Me / Show Me –Use of Variables
Variables are expressions that stand for something of value (just like in math, x + y = 45,
x and y are variables that stand for two numbers that together add up to 45). In math, x
and y are reusable; PL/SQL variables are reusable. The Declaration Section assigns a
memory location, datatype, and/or a starting value for the variable it represents. A
variable can represent a number, character string (string of characters), or boolean
(true/false value). Throughout the PL/SQL code, variable values are always changing,
being initialized or reassigned.

Variables are mainly used for the storage of data and manipulation of stored values.
Consider the SQL statement shown in the slide. The statement is retrieving the first_name
and department_id from the table. If you have to manipulate the first_name or the
department_id, then you have to store the retrieved value. Variables are used to
temporarily store the value. You can use the value stored in these variables for processing
or manipulating the data. Therefore, the variables are used for storing and manipulating
data. Variables can store any PL/SQL object such as variables, types, cursors, and
subprograms.

Reusability is another advantage of declaring variables. After they are declared,
variables can be used repeatedly in an application by referring to them in the statements.

Oracle Academy 1 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

Slide 5: Tell Me / Show Me – Handling Variables in PL/SQL
No instructor notes for this slide

Slide 6: Tell Me / Show Me – Declaring Variables
Point out that a variable is simply a name or label for a value stored in a piece of
computer memory.

Slide 7: Tell Me / Show Me – Declaring Variables: Syntax
In addition to variables, you can also declare cursors and exceptions in the declarative
section. You will learn how to declare cursors and exceptions later in the course.

Slide 8: Tell Me / Show Me – Declaring Variables: Syntax (continued)
No instructor notes for this slide

Slide 9: Tell Me / Show Me – Initializing Variables
No instructor notes for this slide

Slide 10: Tell Me / Show Me – Declaring and Initializing Variables: Examples
The defining of data types and data structures in a language is a significant aid to
readability. PL/SQL is a “strongly typed” language. You can declare variables and
constants in the declarative part of any PL/SQL block, subprogram, or package.

References to an identifier are resolved according to its scope and visibility. The scope of
an identifier is that region of a program unit (block, subprogram, or package) from which
you can reference the identifier. An identifier is visible only in the regions from which
you can reference the identifier using an unqualified name. Identifiers declared in a
PL/SQL block are considered local to that block and global to all its sub-blocks.
Although you cannot declare an identifier twice in the same block, you can declare the
same identifier in two different blocks. The two values represented by the identifier are
distinct, and any change in one does not affect the other.

Slide 11: Tell Me / Show Me – Declaring and Initializing Variables: Examples
(continued)
Ask students to think of examples of declarations that will cause an error:
v_location VARCHAR2(10) := 'Washington DC'; (why?)
v_grade NUMBER(4) := 'A'; (why?)

Slide 12: Tell Me / Show Me – Assigning Values in the Executable Section

In the following program, count is initialized to zero. When the executable code is
started, count is increased to one before being displayed on the screen.
DECLARE
 count INTEGER := 0;
BEGIN
 count := count + 1;

Oracle Academy 2 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

 DBMS_OUTPUT.PUT_LINE(count);
END;

Variables can be assigned a value in the executable section. In the following program,
count is not initialized by the programmer, so the programming language initializes it to
NULL. Of course, anything calculated with a NULL returns a NULL. So nothing will be
displayed on the screen.

DECLARE
 count INTEGER;
BEGIN
 count := count + 1;
 DBMS_OUTPUT.PUT_LINE(count);
END;

A non-initialized variable contains a null value until a non-null value is explicitly
assigned to it.

Slide 13: Tell Me / Show Me – Assigning Values in the Executable Section (continued)
No instructor notes for this slide

Slide 14: Tell Me / Show Me – Assigning Values in the Executable Section (continued)
Another example:
Assignment operator := assigns a value to a variable. The variable must be on the left side
and the value on the right side.
 X := 10;
-- the variable x is assigned the starting value of 10
 P := X * 9;
-- the variable p is equal to the value of variable X that stands for the number of lemons
in a box times 9 which is the number of boxes
 S := P + X;
 Name := ‘Roberts’;

Slide 15: Tell Me / Show Me – Passing Variables as Parameters to PL/SQL Subprograms
The information in this slide will be covered in more detail in later lessons; the most
important point is that you understand that in PL/SQL, a variable can be passed to
subprograms.

Slide 16: Tell Me / Show Me – Assigning Variables to PL/SQL Subprogram Output
In the anonymous block, the variable v_length_of_string is assigned the value returned
by the function num_characters when the value, Oracle Corporation is passed to it.

Slide 17: Tell Me / Show Me – Terminology
Variables – used for storage of data and manipulation of stored values
Parameters – values passed to a program by a user or by another program to customize
the program

Oracle Academy 3 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

Slide 18: Summary
No instructor notes for this slide

Slide 19: Try It / Solve It
No instructor notes for this slide

Oracle Academy 4 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

SECTION 2 LESSON 2 – Recognizing PL/SQL Lexical Units

Slide 1: Recognizing PL/SQL Lexical Units
No instructor notes for this slide

Slide 2: What Will I Learn?
No instructor notes for this slide

Slide 3: Why Learn It?
No instructor notes for this slide

Slide 4: Tell Me / Show Me – Lexical Units in a PL/SQL Block
Identifiers are names for objects, such as variable and file names. Reserved words are
words already used by PL/SQL, such as BEGIN, END, DECLARE. Literals are values
defined within the datatype specified for each piece of data.

Slide 5: Tell Me / Show Me – Identifiers
No instructor notes for this slide

Slide 6: Tell Me / Show Me – Identifiers (continued)
Point out that reserved words are NOT identifiers. They have been highlighted here
(in red) to contrast them with the identifiers.

Slide 7: Tell Me / Show Me – Properties of an Identifier
No spaces or nulls allowed in an identifier (variable). All identifiers (variables) are case
insensitive, which means v_num, V_NUM, and V_Num are all the same identifier. Only
one memory location will be assigned for these variables.

Slide 8: Tell Me / Show Me – Valid and Invalid Identifiers
Be sure to name your objects carefully. Ideally, the identifier name should describe the
object and its purpose. Avoid using identifier names such as A, X, Y1, temp, and so on
because they make your code more difficult to read.

Slide 9: Tell Me / Show Me – Reserved Words
No instructor notes for this slide

Slide 10: Tell Me / Show Me – Reserved Words (continued)
You use delimiters to represent arithmetic operations such as addition and subtraction.
Simple symbols consist of one character. Compound symbols consist of two characters.
Semi-colon ; is the statement terminator. It tells the compiler that it is the end of the
statement. Lines of code are not terminated at the physical end of the line. They are
terminated by the semi-colon. Often a single statement is spread over several lines to
make the code more readable.

Slide 11: Tell Me / Show Me – Reserved Words (continued)
No instructor notes for this slide

Oracle Academy 5 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

Slide 12: Tell Me / Show Me – Delimiters
You have already learned that the symbol “;” is used to terminate a SQL or PL/SQL
statement.

Slide 13: Tell Me / Show Me – Literals
No instructor notes for this slide

Slide 14: Tell Me / Show Me – Character Literals
No instructor notes for this slide

Slide 15: Tell Me / Show Me – Numeric Literals
No instructor notes for this slide

Slide 16: Tell Me / Show Me – Boolean Literals
The idea of Boolean variables and literals may be new to students, because an Oracle
database table cannot contain columns of datatype Boolean. Students will learn how to
define Boolean variables later in this section.

Slide 17: Tell Me / Show Me – Comments
Programs can be translated to machine language, which can be executed directly on the
computer. This is called compiler implementation. This method has the advantage of very
fast program execution, once the translation process is complete. The language that a
compiler translates is called the source language. The lexical analyzer gathers the
characters of the source program into lexical units. The lexical units of a program are
identifiers, reserved words, operators, variables, and punctuation symbols. The lexical
analyzer ignores comments in the source program, because the compiler has no use for
them.

The compiler ignores comment statements but you should read every one. Adding
comments to your program promotes readability and aids understanding. Comments
should describe the purpose and use of each block of code.

Slide 18: Tell Me / Show Me – Syntax for Commenting Code
No instructor notes for this slide

Slide 19: Tell Me / Show Me – Terminology
Lexical Units – Building blocks of any PL/SQL block and are sequences of characters
including letters, digits, tabs, returns, and symbols.
Identifiers – A name, up to 30 characters in length, given to a PL/SQL object.
Reserved words – Words that have special meaning to an Oracle database and cannot be
used as identifiers.
Delimiters – Symbols that have special meaning to an Oracle database.
Literals – An explicit numeric, character string, date, or Boolean value that is not
represented by an identifier.

Oracle Academy 6 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

Comments – Describe the purpose and use of each code segment and are ignored by
PL/SQL.

Slide 20: Summary
No instructor notes for this slide

Slide 21: Try It / Solve It
No instructor notes for this slide

Oracle Academy 7 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

SECTION 2 LESSON 3 – Recognizing Data Types

Slide 1: Recognizing Data Types
No instructor notes for this slide

Slide 2: What Will I Learn?
No instructor notes for this slide

Slide 3: Why Learn It?
In programming, a data type is a classification of a particular type of information. People
can differentiate between different types of data quite easily: by quickly looking at a
number, we know whether it is a decimal, a time, a percentage, an amount of money, or a
date. People use the format and symbols of the number (that is, %, :, and $) to recognize
the type of the data. Similarly, PL/SQL uses special codes to keep track of the different
types of data it processes.

Slide 4: Tell Me / Show Me – PL/SQL Data Types
Reference and Object data types are not covered in this course. For more information,
refer to the PL/SQL User’s Guide and Reference manual.

A variable can be characterized as a set of attributes: name, address, value, type, lifetime,
scope. Name is the identifying word that represents the value. Address of a variable is the
memory address with which it is associated. Value of a variable is the contents of the
memory cell or cells associated with the variable. Type of a variable determines the range
of values the variable can have and the set of operations that are defined for values of the
type.

Before a variable can be referenced in a program, it must be bound to a data type. An
explicit declaration is a statement in a program that lists variable names and specifies that
they are a particular type. An implicit declaration is a means of associating variable with
types through default conventions instead of declaration statements

Oracle Academy 8 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

Scalar Types LOB
Types

Composite
Types

NUMERIC CHARACTER

BINARY_INTEGER
DEC
DECIMAL
DOUBLE PRECISION
FLOAT
INT
INTEGER
NATURAL
NATURALN
NUMBER
NUMERIC
PLS_INTEGER
POSITIVE
POSITIVEN
REAL
SIGNTYPE
SMALLINT

CHAR
CHARACTER
LONG
LONG RAW
NCHAR
NVARCHAR2
RAW
ROWID
STRING
UROWID
VARCHAR
VARCHAR2

BFILE
BLOB
CLOB
NCLOB

RECORD
TABLE
VARRAY

DATE BOOLEAN

DATE
INTERVAL DAY TO SECOND
INTERVAL YEAR TO MONTH
TIMESTAMP
TIMESTAMP WITH LOCAL TIME
ZONE
TIMESTAMP WITH TIME ZONE

BOOLEAN

You should be aware that character and number data types have subtypes that associate a
base type to a constraint. For example, INTEGER and PLS_INTEGER are subtypes of
the NUMBER base type: an INTEGER is a base type (NUMBER) constrained to allow
only whole numbers (no decimal places).

Slide 5: Tell Me / Show Me – Scalar Data Types
Teachers should be aware that character and number data types have subtypes that
associate a base type to a constraint. For example, INTEGER and POSITIVE are
subtypes of the NUMBER base type: an INTEGER is a base type (NUMBER)
constrained to allow only whole numbers (no decimal places).

Oracle Academy 9 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

For now, it may be helpful to think of a scalar type as being like a single column value in
a table, while a record data type is like a whole row of a table

For more information and the complete list of scalar data types, refer to the PL/SQL
User’s Guide and Reference.

Slide 6: Tell Me / Show Me – Scalar Data Types: Character (or String)
Students should recognize many of these scalar data types as being identical to table
column data types. This is one of the benefits of using PL/SQL.

If anyone asks, a LONG variable can store up to 2 gigabytes (2,000,000,000) bytes.

Character/String data is enclosed in single quotes and called a character literal. Programs
use variables declared a specific datatype to complete a set of processes. Variables of
character datatypes hold all kinds of data, as long as the data is enclosed in single quotes.

Slide 7: Tell Me / Show Me – Scalar Data Types: Number
Point out that in PL/SQL (as in table columns) precision includes scale. For example,
NUMBER(6,2) can contain a maximum value of 9999.99.

Do not go into detail about the *_INTEGER and BINARY_* data types. Starting with
Oracle version 10.1, PLS_INTEGER and BINARY_INTEGER require the same amount
of storage and are equally fast. In Oracle version 9.2 and earlier, PLS_INTEGER
required less storage and was faster than BINARY_INTEGER.

Variables of numeric datatypes are assigned a number, any number. Numeric data,
numeric literals, are powerful tools in writing procedural programs. A NUMBER(9, 2)
can hold a value of 9999999.99

Slide 8: Tell Me / Show Me – Scalar Data Types: Date
No instructor notes for this slide

Slide 9: Tell Me / Show Me – Scalar Data Types: Date (continued)
No instructor notes for this slide

Slide 10: Tell Me / Show Me – Scalar Data Types: Boolean
Boolean Data Type
BOOLEAN - Base type that stores one of the three possible values used for logical
calculations: TRUE, FALSE, or NULL.

When assigned to a variable, the relational operators return a Boolean value. So, the
following assignment is allowed: complete := (count > 500).

Oracle Academy 10 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

Slide 11: Tell Me / Show Me – Composite Data Types
For now, it may be helpful to think of a scalar type as being like a single column value in
a table, while a record data type is like a whole row of a table.

Slide 12: Tell Me / Show Me – Composite Data Types (continued)
Students will learn about composite data types in Section 11.

Slide 13: Tell Me / Show Me – LOB Data Type
Very large character strings known as LONGs and LOBs. Very large amounts of data can
be manipulated with ease.

LOB data types are covered in detail in Section 11.

Slide 14: Tell Me / Show Me – LOB Data Type

• The character large object (CLOB) data type is used to store large blocks of
character data in the database.

• The binary large object (BLOB) data type is used to store large unstructured or
structured binary objects in the database. When you insert or retrieve such data to
and from the database, the database does not interpret the data. External
applications that use this data must interpret the data.

• The binary file (BFILE) data type is used to store large binary files. Unlike other
LOBS, BFILES are not stored in the database. BFILEs are stored outside the
database. They could be operating-system files. Only a pointer to the BFILE is
stored in the database.

• The national language character large object (NCLOB) data type is used to store
large blocks of single-byte or fixed-width multibyte NCHAR Unicode data in the
database.

Slide 15: Tell Me / Show Me – Terminology
Scalar – Hold a single value with no internal components.
Composite – Contain internal elements that are either scalar (record) or composite
(record and table)
LOB – Hold values, called locators, that specify the location of large objects (such as
graphic images) that are stored out of line.
Reference – Hold values, called pointers, that point to a storage location.
Object – A schema object with a name, attributes, and methods.
CLOB – Store large blocks of character data in the database.
BLOB – Store large unstructured or structured binary objects.
BFILE – Store large binary files outside of the database.
NCLOB (National Language Character Large Object) – Store large blocks of single-byte
or fixed width multi-byte NCHAR Unicode data in the database.

Slide 16: Summary
No instructor notes for this slide

Oracle Academy 11 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

Slide 17: Try It / Solve It
No instructor notes for this slide

Oracle Academy 12 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

SECTION 2 LESSON 4 - Using Scalar Data Types

Slide 1: Using Scalar Data Types
No instructor notes for this slide

Slide 2: What Will I Learn?
No instructor notes for this slide

Slide 3: Why Learn It?
No instructor notes for this slide

Slide 4: Tell Me / Show Me – Declaring Character Variables
All variables must be declared. The data itself specifies the datatype. Character data or
character string received this name in reference to a string of data.

The examples of variable declaration shown in the slide are defined as follows:

• v_emp_job: Variable to store an employee job title
• v_order_no: Variable to store an order number. Note that a number can also be

used.
• v_product_id: Variable to store a product ID
• v_rpt_body_part: Variable to store a part of a report. Note that a LOB can also

be used to store large character-based objects.

More examples:
DECLARE
 emp_no VARCHAR2(9);
 emp_last_name VARCHAR2(25);
 emp_training_video LONG;
The emp_no is declared as a variable character data type of 9 positions in length.
The emp_last_name is declared as a variable character data type of 25 positions in
length.
The emp_training_video is declared as a variable character data type of LOB.

Slide 5: Tell Me / Show Me – Declaring Number Variables
Again, all variables must be declared before being used in a program. Numbers are a
powerful datatype…since most programs are written using numbers in some form.

The examples of variable declaration shown in the slide are defined as follows:

• v_dept_total_sal: Variable to accumulate the total salary for a department and
initialized to 0

• v_count_loop: Variable to count the iterations of a loop and initialized to 0
• c_tax_rate: A constant variable for the tax rate, which never changes throughout

the PL/SQL block and is set to 8.25

Oracle Academy 13 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

Students may ask: how can a constant be variable – surely a constant cannot vary?
Remind them that the word variable in PL/SQL means: a name for a storage location
which contains a value.

More Examples:
DECLARE
 e_tot_salary NUMBER(8,2) := 0;
 e_count INTEGER := 0;
 e_tax_rate CONSTANT NUMBER(4,2) := 8.25;

e_tot_salary: Variable to accumulate the total salary and initialized to 0
e_count: Variable to count the iterations of a loop and initialized to 0
e_tax_rate: Constant variable for the tax rate, which never changes throughout the
PL/SQL block and is set to 8.25

Slide 6: Tell Me / Show Me – Declaring Date Variables
When declaring dates, the standard format DD-MON-YYYY applies.

The examples of variable declaration shown in the slide are defined as follows:

• v_orderdate: Variable to store the date of an order, initialized to one week from
today

• v_natl_holiday: Variable to store the national holiday date for a country
• v_web_sign_on_date: Variable to store the time a user last logged in to a Web

site

More examples:
DECLARE
 v_orderdate DATE := SYSDATE + 7;
 v_natl_holiday DATE;
 v_web_sign_on_date TIMESTAMP;
…

v_orderdate: Variable to store the ship date of an order and initialize to one week from
today
v_natl_holiday: Variable to store the national holiday date for a country
v_web_sign_on_date: Variable to store the time a user last logged in to a Web site

Slide 7: Tell Me / Show Me – Declaring Boolean Variables
All variables need to be declared with a specific datatype. Boolean is just another unique
datatype that allows a condition to be checked.

The examples of variable declaration shown in the slide are defined as follows:

• v_valid: Flag to indicate whether a piece of data is valid or invalid, and initialized
to TRUE

• v_is_found: Flag to indicate whether a piece of data has been found and
initialized to FALSE

Oracle Academy 14 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

• v_underage: Flag to indicate whether a person is underage or not.

Slide 8: Tell Me / Show Me – Declaring Boolean Variables
With PL/SQL, you can compare variables in both SQL and procedural statements. These
comparisons, called Boolean expressions, consist of simple or complex expressions
separated by relational operators. In a SQL statement, you can use Boolean expressions
to specify the rows in a table that are affected by the statement. In a procedural statement,
Boolean expressions are the basis for conditional control. NULL stands for a missing,
inapplicable, or unknown value.
Examples

emp_sal1 := 50000;
emp_sal2 := 60000;

The following expression yields TRUE:
emp_sal1 < emp_sal2

Declare, initialize and modify a Boolean variable:

DECLARE
 v_flag BOOLEAN := FALSE;
BEGIN
 v_flag := TRUE;
END;

More examples:
DECLARE
 e_insurance BOOLEAN NOT NULL := TRUE;
 e_is_found BOOLEAN := FALSE;
 e_retire BOOLEAN;

e_insurance: Flag to indicate whether an employee is insured, and initialized to TRUE
e_is_found: Flag to indicate whether a piece of data has been found and initialized to
FALSE
e_retire: Flag to indicate whether an employee is retired or not

Slide 9: Tell Me / Show Me – Guidelines for Declaring and Initializing PL/SQL Variables
Here are some guidelines to follow while declaring PL/SQL variables:

• Use meaningful and appropriate names for variables. For example, consider using
salary and sal_with_commission instead of salary1 and salary2.

• Follow naming conventions—for example, v_name to represent a variable and
c_name to represent a constant.

• Impose the NOT NULL constraint when the variable must contain a value. You
cannot assign nulls to a variable defined as NOT NULL. The NOT NULL
constraint must be followed by an initialization clause.

v_pincode NUMBER(15) NOT NULL := 17642;
• Avoid using column names as identifiers. If PL/SQL variables occur in SQL

statements and have the same name as a column, the Oracle server assumes that it
is the column that is being referenced. Although the example code in the slide

Oracle Academy 15 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

works, code that is written using the same name for a database table and variable
name is not easy to read or maintain.

It is a good idea to initialize all variables to a starting value, especially if that starting
value is zero.

Slide 10: Tell Me / Show Me – Anchoring Variables with the %TYPE Attribute
This anchoring reference is resolved at the time the code is compiled; there is no runtime
overhead to anchoring. The anchor also establishes a dependency between the code and
the anchored element (usually the table). This means that if those elements are changed,
the code in which the anchoring takes place is marked invalid. When it is recompiled, the
anchor will again be resolved, thereby keeping the code current with the anchored
element.

Slide 11: Tell Me / Show Me – %TYPE Attribute
Ask students: what if the emp_salary column in the table is later altered to
NUMBER(8,2) and a larger value such as 123456.78 is stored in it? What will the
PL/SQL block do now ?

Slide 12: Tell Me / Show Me – %TYPE Attribute (continued)
No instructor notes for this slide

Slide 13: Tell Me / Show Me – Declaring Variables with the %TYPE Attribute
Declare variables to store the last name of an employee. The variable v_emp_lname is
defined to be of the same data type and size as the last_name column in the employees
table. The %TYPE attribute provides the data type of a database column.

Declare variables to store the balance of a bank account, as well as the minimum balance,
which is 1,000. The variable v_min_balance is defined to be of the same data type as the
variable v_balance. The %TYPE attribute provides the data type of a variable.

A NOT NULL database column constraint does not apply to variables that are declared
using %TYPE. Therefore, if you declare a variable using the %TYPE attribute that uses a
database column defined as NOT NULL, you can assign the NULL value to the variable.

More examples:
 v_emp_lname employees.last_name%TYPE;
 v_balance NUMBER(7,2);
 v_min_balance v_balance%TYPE := 1000;

Declare variables to store the last name of an employee. The variable v_emp_lname is
defined to be of the same data type and size as the last_name column in the employees
table. The %TYPE attribute provides the data type of a database column.

Oracle Academy 16 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

Slide 14: Tell Me / Show Me – Advantages of the %TYPE Attribute
No instructor notes for this slide

Slide 15: Tell Me / Show Me – %TYPE Attribute
If the emp_salary column’s data type was altered later, the corresponding PL/SQL
variable’s data type would automatically be changed to continue to match the column’s
data type.

Slide 16: Tell Me / Show Me – Terminology
Boolean – A datatype that stores one of the three possible values used for logical
calculations: TRUE, FALSE, or NULL.
%TYPE – Attribute used to declare a variable according to another previously declared
variable or database column.

Slide 17: Summary
No instructor notes for this slide

Slide 18: Try It / Solve It
No instructor notes for this slide

Oracle Academy 17 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

SECTION 2 LESSON 5 - Review of SQL Joins

Slide 1: Review of SQL Joins
No instructor notes for this slide

Slide 2: What Will I Learn?
No instructor notes for this slide

Slide 3: Why Learn It?
No instructor notes for this slide

Slide 4: Tell Me / Show Me - Equijoin
No instructor notes for this slide

Slide 5: Tell Me / Show Me – Equijoin
No instructor notes for this slide

Slide 6: Tell Me / Show Me – Nonequijoin
No instructor notes for this slide

Slide 7: Tell Me / Show Me – Nonequijoin (continued)
No instructor notes for this slide

Slide 8: Tell Me / Show Me – Outer Join
No instructor notes for this slide

Slide 9: Tell Me / Show Me – Outer Join (continued)
No instructor notes for this slide

Slide 10: Tell Me / Show Me – Cartesian Product
No instructor notes for this slide

Slide 11: Tell Me / Show Me – Cartesian Product (continued)
No instructor notes for this slide

Slide 12: Tell Me / Show Me – Terminology
Equijoin – Sometimes called a simple join, it combines rows that have equal values for
the specified columns.
Nonequijoin – Combines tables that have no exact matching columns.
Outer join – Combines rows that have equivalent values for the specified columns plus
those rows in one of the tables that have no matching value in the other table.
Cartesian product – When a join query does not specify a condition in the WHERE
clause. Often used with spatial/mapping applications.

Oracle Academy 18 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

Slide 13: Summary
No instructor notes for this slide

Slide 14: Try It / Solve It
No instructor notes for this slide

Oracle Academy 19 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

SECTION 2 LESSON 6 - Review of SQL Group Functions and Subqueries

Slide 1: Review of SQL Group Functions and Subqueries
No instructor notes for this slide

Slide 2: What Will I Learn?
No instructor notes for this slide

Slide 3: Why Learn It?
No instructor notes for this slide

Slide 4: Tell Me / Show Me – Group Functions
No instructor notes for this slide

Slide 5: Tell Me / Show Me – Group Functions (continued)
Point out that these two examples give the same result because COUNTRY_ID cannot be
null.

Slide 6: Tell Me / Show Me – Group Functions (continued)
No instructor notes for this slide

Slide 7: Tell Me / Show Me – Group Functions (continued)
No instructor notes for this slide

Slide 8: Tell Me / Show Me – Group Functions (continued)
No instructor notes for this slide

Slide 9: Tell Me / Show Me – GROUP BY

• All individual columns specified along with the group function (AVG, SUM,
COUNT, MAX, MIN, STDDEV, and VARIANCE) in the SELECT clause must
be included in the GROUP BY clause.

• You cannot use a column alias in the GROUP BY clause.
• A GROUP BY clause can be used in a SQL statement without having a group

function in the SELECT clause. For example:

 SELECT region_id, country_name
 FROM wf_countries
 GROUP BY region_id, country_name;

Slide 10: Tell Me / Show Me – HAVING
No instructor notes for this slide

Slide 11: Tell Me / Show Me – HAVING (continued)
No instructor notes for this slide

Oracle Academy 20 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

Slide 12: Tell Me / Show Me – Subqueries
Remind students that a subquery must be enclosed in parentheses (brackets).

Slide 13: Tell Me / Show Me – Subqueries (continued)
No instructor notes for this slide

Slide 14: Tell Me / Show Me – Group Functions and Subqueries
No instructor notes for this slide

Slide 15: Tell Me / Show Me – Group Functions
Ask students: what question is answered here?
Answer: Which country in Oceania has the highest population?

Slide 16: Tell Me / Show Me – Multiple-Row Subqueries
No instructor notes for this slide

Slide 17: Tell Me / Show Me – Multiple-Row Subqueries (continued)
Students may point out that we do not need a subquery for this. The following statement
will produce the same results:

SELECT country_name, population, airports
FROM wf_countries
WHERE airports > 1;

Slide 18: Tell Me / Show Me – ANY and ALL Operators
No instructor notes for this slide

Slide 19: Tell Me / Show Me – ANY Operator
Point out that we do not need a subquery for this. It could have been written (more
simply) as:

SELECT country_name, population, area
 FROM wf_countries
 WHERE area < 1000;

Slide 20: Tell Me / Show Me – ALL Operator
The slide example assumes that “A” is the first letter of the alphabet. It could have been
written better as:

SELECT country_name FROM wf_countries c, wf_world_regions wf
 WHERE c.region_id = wr.region_id
 AND region_name NOT IN
 (SELECT region_name from wf_world_regions
 WHERE UPPER(region_name) LIKE 'A%');

Oracle Academy 21 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

Slide 21: Tell Me / Show Me – Terminology
Group Functions -- These functions operate on a whole table or on a specific grouping
of rows to return one result.
GROUP BY – Clause used in a query to divide the rows in a table into smaller groups.
HAVING – Clause used in a query to restrict groups.
Subquery – A SELECT statement that is embedded in a clause of another SQL
statement.
Multiple Row subqueries – Subqueries that use multiple row operators and return more
than one row from the inner query.
ANY -- Operator used when the outer query WHERE clause is designed to restrict rows
based on any value returned from the inner query.
ALL -- Operator used when the outer query WHERE clause is designed to restrict rows
based on all values returned from the inner query.

Slide 22: Summary
No instructor notes for this slide

Slide 23: Try It / Solve It
No instructor notes for this slide

Oracle Academy 22 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

SECTION 2 LESSON 7 - Writing PL/SQL Executable Statements

Slide 1: Writing PL/SQL Executable Statements
No instructor notes for this slide

Slide 2: What Will I Learn?
No instructor notes for this slide

Slide 3: Why Learn It?
No instructor notes for this slide

Slide 4: Tell Me / Show Me – Assigning New Values to Variables
Assigning a variable: the variable must always be on the left side of the assignment
symbol (:=); the value will always be on the right side of the assignment symbol.

v_num := v_count + c_people

v.num is the variable memory location that will be assigned the value in the variable
memory location v_count plus the value of the memory location c_people

Slide 5: Tell Me / Show Me – SQL Functions in PL/SQL
Functions are used as short cuts. Someone already programmed a block of code to
accomplish a specific process, procedures and functions. Use them to make writing your
program easier.

Another example:
DECLARE
 v_last_day DATE;
BEGIN
 v_last_day := LAST_DAY(SYSDATE);
 dbms_output.put_line(v_last_day);
END;

Another example:
DECLARE
 v_first_day DATE;
 v_last_day DATE;
BEGIN
 v_first_day := SYSDATE;
 v_last_day := ADD_MONTHS(v_first_day, 6)
 dbms_output.put_line(v_first_day);
 dbms_output.put_line(v_last_day);
END;

Slide 6: Tell Me / Show Me – SQL Functions in PL/SQL (continued)
SQL functions help you to manipulate data; they fall into the following categories:

Oracle Academy 23 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

• Number
• Character
• Conversion
• Date
• Miscellaneous

The following functions are not available in procedural statements:
• DECODE (because it is not needed in PL/SQL; instead, we use CASE which is

more powerful)
• Group functions: AVG, MIN, MAX, COUNT, SUM, STDDEV, and

VARIANCE. Group functions apply to groups of rows in a table and, therefore,
are available only in SQL statements in a PL/SQL block.
The functions mentioned here are only a subset of the complete list.

Slide 7: Tell Me / Show Me – Character Functions
No instructor notes for this slide

Slide 8: Tell Me / Show Me – Examples of Character Functions
No instructor notes for this slide

Slide 9: Tell Me / Show Me – Number Functions
No instructor notes for this slide

Slide 10: Tell Me / Show Me – Examples of Number Functions
No instructor notes for this slide

Slide 11: Tell Me / Show Me – Date Functions
No instructor notes for this slide

Slide 12: Tell Me / Show Me – Examples of Date Functions
No instructor notes for this slide

Slide 13: Tell Me / Show Me – Data Type Conversion
No instructor notes for this slide

Slide 14: Tell Me / Show Me – Implicit Conversions
Whenever PL/SQL detects that a conversion is necessary, it attempts to change the values
as required to perform the operation.

In the chart, the cells marked ‘X’ show which implicit conversions can be done.

For this course, we will focus on implicit conversions between:

• Characters and numbers
• Characters and dates

For more information about the above chart, refer to “Converting PL/SQL Data Types” in
the PL/SQL User’s Guide and Reference.

Oracle Academy 24 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

Slide 15: Tell Me / Show Me – Examples of Implicit Conversion
No instructor notes for this slide

Slide 16: Tell Me / Show Me – Drawbacks of Implicit Conversions
It is strongly recommended that you avoid allowing either the SQL or PL/SQL languages
to perform implicit conversions on your behalf. You should use conversion functions to
guarantee that the right kinds of conversions take place.

PL/SQL cannot convert ‘abc’ to a number and so will raise the VALUE_ERROR
exception when it tries to execute the conversion.

Slide 17: Tell Me / Show Me – Drawbacks of Implicit Conversions (continued)
No instructor notes for this slide

Slide 18: Tell Me / Show Me – Explicit Conversions
No instructor notes for this slide

Slide 19: Tell Me / Show Me – Examples of Explicit Conversions
No instructor notes for this slide

Slide 20: Tell Me / Show Me – Examples of Explicit Conversions (continued)
Note that the DBMS_OUTPUT.PUT_LINE procedure expects an argument of type
character. In the above example, variable v_c is a number, therefore we should explicitly
code: DBMS_OUTPUT.PUT_LINE(TO_CHAR(v_c));

Slide 21: Tell Me / Show Me – Data Type Conversion Example
The examples in the slide show implicit and explicit conversions of the DATE data type.

1. Implicit conversion happens in this case and the date is assigned to
v_date_of_joining.

2. PL/SQL gives you an error because the date that is being assigned is not in the
default format.

3. Use the TO_DATE function to explicitly convert the given date in a particular
format and assign it to the DATE data type variable date_of_joining.

Slide 22: Tell Me / Show Me – Operators in PL/SQL
No instructor notes for this slide

Slide 23: Tell Me / Show Me – Operators in PL/SQL (continued)
No instructor notes for this slide

Oracle Academy 25 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

Slide 24: Tell Me / Show Me – Operators in PL/SQL (continued)
The second example could have been written as:

IF v_sal BETWEEN 50000 AND 150000 THEN
 v_good_sal := TRUE;
ELSE
 v_good_sal := FALSE;
END IF;

But assigning the result of the condition directly to the Boolean variable is much neater.

Slide 25: Tell Me / Show Me – Terminology
Implicit conversion – Converts data types dynamically if they are mixed in a statement.
Explicit conversion – Converts values from one data type to another by using built-in
functions.

Slide 26: Summary
No instructor notes for this slide

Slide 27: Try It / Solve It
No instructor notes for this slide

Oracle Academy 26 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

SECTION 2 LESSON 8 - Nested Blocks and Variable Scope

Slide 1: Nested Blocks and Variable Scope
No instructor notes for this slide

Slide 2: What Will I Learn?
No instructor notes for this slide

Slide 3: Why Learn It?
No instructor notes for this slide

Slide 4: Tell Me / Show Me – Nested Blocks
No instructor notes for this slide

Slide 5: Tell Me / Show Me – Nested Blocks (continued)
No instructor notes for this slide

Slide 6: Tell Me / Show Me – Variable Scope
Each block allows the grouping of logically related declarations and statements. This
makes structured programming easy to use due to placing declarations close to where
they are used (in each block). The declarations are local to the block and cease to exist
when the block is exited. In PL/SQL, a variable’s scope is the block in which it is
declared plus all blocks nested within the declaring block.

Answer: The scope of v_outer_variable includes both the outer and inner blocks. The
scope of v_inner_variable includes only the inner block. It is valid to refer to
v_outer_variable within the inner block, but referencing v_inner_variable within the
outer block would return an error.

Slide 7: Tell Me / Show Me – Variable Scope
Answer:
The scope of v_father_name and v_date_of_birth is both blocks (inner and outer). The
scope of v_child_name is the inner block only. See slide 9.

Slide 8: Tell Me / Show Me – Local and Global Variables
Local variables are accessible in its origin block. Global variables are accessible by all
blocks.

The scope of a variable consists of all the blocks in which the variable is either local (the
declaring block) or global (nested blocks within the declaring block).

The scope or life of a variable is as long as the block is executed. Once a block is
compiled the variable scope does not exist. Each block has it’s own set of data, code, and
variable scopes.

Oracle Academy 27 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

Slide 9: Tell Me / Show Me – Local and Global Variables (continued)
No instructor notes for this slide

Slide 10: Tell Me / Show Me – Variable Scope
No instructor notes for this slide

Slide 11: Tell Me / Show Me – Variable Naming
No instructor notes for this slide

Slide 12: Tell Me / Show Me – Variable Visibility
The statement will reference the v_date_of_birth declared in the inner block.

Slide 13: Tell Me / Show Me – Variable Visibility (continued)

1. Observe the code in the executable section of the inner PL/SQL block. You
can print the father’s name, the child’s name, and the date of birth. Only the
child’s date of birth can be printed here because the father’s date of birth is
not visible here.

2. The father’s date of birth is visible here and therefore can be printed.

Slide 14: Tell Me / Show Me – Variable Visibility (continued)
No instructor notes for this slide

Slide 15: Tell Me / Show Me – Qualifying an Identifier
A good example of a identifier that not visible is anything declared within a package.

Slide 16: Tell Me / Show Me – Qualifying an Identifier (continued)
We could also label the inner block but this is not needed here.

Slide 17: Tell Me / Show Me – Scope of Exceptions in Nested Blocks
This lesson briefly introduces the ideas of exception handling and propagation to the
calling environment. Tell students they will learn much more about exception handling in
Section 6.

Slide 18: Tell Me / Show Me – Trapping Exceptions with a Handler
No instructor notes for this slide

Slide 19: Tell Me / Show Me – Handling Exceptions in an Inner Block
In writing PL/SQL programs, exception handling should always be included. It takes a lot
of extra coding to include exception handling within blocks, but it is definitely needed.

Slide 20: Tell Me / Show Me – Propagating Exceptions to an Outer Block
No instructor notes for this slide

Slide 21: Tell Me / Show Me – Propagating Exceptions to an Outer Block (continued)
No instructor notes for this slide

Oracle Academy 28 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

Slide 22: Tell Me / Show Me – Propagating Exceptions to a Subblock
No instructor notes for this slide

Slide 23: Tell Me / Show Me – Terminology
Variable scope – Consists of all the blocks in which the variable is either local (the
declaring block) or global (nested blocks within the declaring block) .
Variable visibility – The portion of the program where the variable can be accessed
without using a qualifier.
Qualifier – A label given to a block.
Exception handling – Allows clean separation of the error processing code from the
executable code so that a program can continue operating in the presence of errors.
Exception propagating – The exception reproduces itself in successive enclosing blocks
until a handler is found or there are no more blocks to search in.

Slide 24: Summary
No instructor notes for this slide

Slide 25: Try It / Solve It
No instructor notes for this slide

Oracle Academy 29 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

SECTION 2 LESSON 9 - Good Programming Practices

Slide 1: Good Programming Practices
No instructor notes for this slide

Slide 2: What Will I Learn?
No instructor notes for this slide

Slide 3: Why Learn It?
There are several books and Web sites written about PL/SQL best practices. Ask your
students to search the Internet to find these books.

Slide 4: Tell Me / Show Me – Programming Practices
All programmers have a set standard that they use called structured programming.
Structured programming includes some very simple things like indenting, initcap,
uppercase, and lowercase. The harder concepts are creating blocks to separate processes
in the program.

Slide 5: Tell Me / Show Me – Programming Guidelines
Follow programming guidelines shown in the slide to produce clear code and reduce
maintenance when developing a PL/SQL block.

These guidelines should be followed strongly. All programmers like to see clean code.

Slide 6: Tell Me / Show Me – Commenting Code
Comment code to document each phase and to assist debugging. Comment the PL/SQL
code with two dashes (--) if the comment is on a single line, or enclose the comment
between the symbols “/*” and “*/” if the comment spans several lines. Comments are
strictly informational and do not enforce any conditions or behavior on logic or data.
Well-placed comments are extremely valuable for code readability and future code
maintenance. In the example in the slide, the lines enclosed within “/*” and “*/” is a
comment that explains the code that follows it.

Slide 7: Tell Me / Show Me – Case Conventions
In a sense, it doesn’t matter which convention we use as long as (a) a meaningful
convention exists, and (b) we use it consistently. The case convention described here is
the one most commonly used in SQL and PL/SQL, and is also the one used in the Oracle
product documentation.

Note: each company has its own set of rules which may or may not conform to the
conventions described here.

Slide 8: Tell Me / Show Me – Naming Conventions
The course examples follow the convention described in this slide.

Oracle Academy 30 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

Slide 9: Tell Me / Show Me – Indenting Code
For clarity, and to enhance readability, indent each level of code. To show structure, you
can divide lines by using carriage returns and indent lines by using spaces or tabs.
Compare the following IF statements for readability:

IF x>y THEN v_max:=x;ELSE
v_max:=y;END IF;

IF x > y THEN
 v_max := x;
ELSE
 v_max := y;
END IF;

Slide 10: Summary
No instructor notes for this slide

Slide 11: Try It / Solve It
No instructor notes for this slide

Oracle Academy 31 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

PRACTICE SOLUTIONS

SECTION 2 LESSON 1 - Using Variables in PL/SQL

Terminology
1. __Variables_______________ Used for storage of data and manipulation of stored

values.
2. __Parameters______________ values passed to a program by a user or by another

program to customize the program.

Try It/Solve It
1. Fill in the blanks.

A. Variables can be assigned to the output of a ____sub program____.

B. Variables can be assigned values in the __executable (or declarative) _ section
of a PL/SQL block.

C. Variables can be passed as __parameters_______ to subprograms.

2. Identify valid and invalid variable declaration and initialization:

number_of_copies PLS_INTEGER; Valid
printer_name CONSTANT VARCHAR2(10); Invalid
deliver_to VARCHAR2(10):=Johnson; Invalid
by_when DATE:= SYSDATE+1; Valid

3. Examine the following anonymous block and choose the appropriate statement.

DECLARE
 fname VARCHAR2(20);
 lname VARCHAR2(15) DEFAULT 'fernandez';
BEGIN
 DBMS_OUTPUT.PUT_LINE(FNAME ||' ' ||lname);
END;

A. The block will execute successfully and print ‘ fernandez’.
B. The block will give an error because the fname variable is used without

initializing.
C. The block will execute successfully and print ‘null fernandez’.
D. The block will give an error because you cannot use the DEFAULT keyword to

initialize a variable of the VARCHAR2 type.
E. The block will give an error because the FNAME variable is not declared.

Oracle Academy 32 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

4. In Application Express:

A. Create the following function:

CREATE FUNCTION num_characters (p_string IN VARCHAR2)
RETURN INTEGER AS
 v_num_characters INTEGER;
BEGIN
 SELECT LENGTH(p_string) INTO v_num_characters
 FROM dual;
 RETURN v_num_characters;
END;

B. Create and execute the following anonymous block:.

DECLARE
 v_length_of_string INTEGER;
BEGIN
 v_length_of_string := num_characters('Oracle Corporation');
 DBMS_OUTPUT.PUT_LINE(v_length_of_string);
END;

5. Write an anonymous block that uses a country name as input and prints the highest

and lowest elevations for that country. Use the wf_countries table. Execute your
block three times using United States of America, French Republic, and Japan.

DECLARE
 v_country_name VARCHAR2(50):= 'United States of America';
 v_lowest_elevation NUMBER(6);
 v_highest_elevation NUMBER(6);
BEGIN
 SELECT lowest_elevation, highest_elevation
 INTO v_lowest_elevation, v_highest_elevation
 FROM wf_countries
 WHERE country_name = v_country_name;
 DBMS_OUTPUT.PUT_LINE('The lowest elevation for '||v_country_name
 ||' is: '||v_lowest_elevation);
 DBMS_OUTPUT.PUT_LINE('The highest elevation for '||v_country_name
 ||' is: '||v_highest_elevation);
END;

Oracle Academy 33 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

SECTION 2 LESSON 2 - Recognizing PL/SQL Lexical Units

Terminology
1. __Literals_________________ An explicit numeric, character string, date, or

Boolean value that is not represented by an identifier.
2. __Delimiters_______________ Symbols that have special meaning to an Oracle

database.
3. __Reserved words___________ Words that have special meaning to an Oracle

database and cannot be used as identifiers.
4. __Comments________________ Describe the purpose and use of each code

segment and are ignored by PL/SQL.
5. __Lexical Units______________ Building blocks of any PL/SQL block and are

sequences of characters including letters, digits, tabs, returns, and symbols.
6. __Identifiers_________________ A name, up to 30 characters in length, given to a

PL/SQL object.

Try It/Solve It
1. Fill in the blanks.

A. An __identifier_____ is the name given to a PL/SQL object.

B. A __reserved word______ is a word that has special meaning to the Oracle
database.

C. A _____delimiter___ is a symbol that has special meaning to the Oracle

database.

D. A ______literal_________ is an explicit numeric, character string, date, or
Boolean value that is not represented by an identifier.

E. A_____comment______ explains what a piece of code is trying to achieve.

Oracle Academy 34 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

2. Identify each of the following identifiers as valid or invalid. If invalid, specify why.

Identifier Valid
(X)

Invalid
(X)

Why Invalid?

Today X
Last name X Contains a space
today’s_date X Contains a quote

delimiter
number_of_days_in_february_this_ year X Contains more than 30

characters
Isleap$year X
#number X Must start with a letter
NUMBER# X
Number1to7 X

3. Identify the reserved words in the following list.

Word Reserved?
Y/N

create Y
make N
table Y
seat N
alter Y
rename Y
row Y
number Y
web N

4. What kind of lexical unit (for example Reserved word, Delimiter, Literal, Comment)

is each of the following?

Value Lexical Unit
SELECT Reserved word
:= Delimiter
'TEST' Literal
FALSE Literal
-- new process Comment
FROM Reserved word
/*select the country with
the highest elevation */

Comment

V_test Identifier
4.09 Literal

Oracle Academy 35 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

SECTION 2 LESSON 3 - Recognizing Data Types

Terminology
1. __NCLOB________________ Store large blocks of single-byte or fixed width

multi-byte NCHAR data in the database.
2. __LOB___________________ Hold values, called locators, that specify the

location of large objects (such as graphic images) that are stored out of line.
3. __Scalar__________________ Hold a single value with no internal components.
4. __BLOB__________________ Store large unstructured or structured binary

objects.
5. __Composite ______________ Contain internal elements that are either scalar

(record) or composite (record and table)
6. __BFILE___________________ Store large binary files outside of the database.
7. __Reference_______________ Hold values, called pointers, that point to a storage

location.
8. __Object__________________ A schema object with a name, attributes, and

methods.
9. __CLOB___________________ Store large blocks of character data in the database.

Try It/Solve It
1. In your own words, describe what a data type is and explain why it is important.

PL/SQL uses special data types to keep track of the different types of data it
processes. These data types define how the data is physically stored, what the
constraints for the data are, and finally, what the valid range of values for the data
is.

Oracle Academy 36 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

2. Match the data type category (LOB, Scalar, Composite, Reference, and Object) with
the appropriate definition. Each data type may be used more than once.

Description Data Type
Stores a large amount of data LOB
Has internal components that can be
manipulated individually

Composite

Has a name, attributes, and methods Object
Includes CLOBs, BLOBs, BFILEs, and
NCLOBs

LOB

Has no internal components Scalar
Includes TABLEs, RECORDs, NESTED
TABLEs, and VARRAYs

Composite

Includes TIMESTAMP, DATE,
BINARY_INTEGER, LONG, LONG
RAW, and BOOLEAN

Scalar

Holds values, called pointers, that point to
a storage location

Reference

3. Enter the data type category for each value into the Data Type Category column. In

the Data Type column, enter a specific data type that can be used for the value. The
first one has been done for you.

Value Data Type Category Data Type
Switzerland Scalar VARCHAR2
100.20 Scalar NUMBER
1053 Scalar NUMBER (or

PLS_INTEGER)
12-DEC-2005 Scalar DATE
False Scalar BOOLEAN
Index Last_name
1 'Newman'
2 'Raman'
3 'Han'

Composite TABLE

A movie LOB BFILE
A soundbyte LOB BFILE or BLOB
A picture LOB BLOB

Oracle Academy 37 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

SECTION 2 LESSON 4 - Using Scalar Data Types

Terminology
1. ___BOOLEAN_______________ A datatype that stores one of the three possible
values used for logical calculations: TRUE, FALSE, or NULL.
2. ___%TYPE________________ Attribute used to declare a variable according to
another previously declared variable or database column.

Try It/Solve It
1. Declarations:

A. Which of the following variable declarations are valid?

 Declaration Valid or
Invalid

a number_of_students PLS_INTEGER; Valid
b STUDENT_NAME VARCHAR2(10)=Johnson; Invalid
c stu_per_class CONSTANT NUMBER; Invalid
d tomorrow DATE := SYSDATE+1; Valid

B. For those declarations in 1.A. that are invalid, describe why they are invalid.

b is invalid because string literals should be enclosed within single quotation
marks and because := is used to assign values.
c is invalid because constant variables must be initialized during declaration.

C. Write an anonymous block in which you declare and print each of the variables in

1A, correcting the invalid declarations.

DECLARE
 number_of_students PLS_INTEGER := 30;
 student_name VARCHAR2(10) := 'Johnson';
 stu_per_class CONSTANT NUMBER := 1;
 tomorrow DATE := SYSDATE + 1;
BEGIN
 DBMS_OUTPUT.PUT_LINE ('The number of students is:
'||number_of_students||'.');
 DBMS_OUTPUT.PUT_LINE ('The name of the students is:
'||student_name||'.');
 DBMS_OUTPUT.PUT_LINE ('The number of students per class is:
'||stu_per_class||'.');
 DBMS_OUTPUT.PUT_LINE ('Tomorrows date is: '||tomorrow||'.');
END;

Oracle Academy 38 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

2. Evaluate the variables in the following code. Answer the following questions about
each variable. Is it named well? Why or why not? If it is not named well, what would
be a better name and why?

DECLARE
 country_name VARCHAR2 (50);

median_age NUMBER(6,2);
BEGIN
 SELECT country_name, median_age INTO country_name, median_age

 FROM wf_countries
 WHERE country_name = 'United States of America';

 DBMS_OUTPUT.PUT_LINE(' The median age in '||country_name||' is
'||median_age||'.');
END;

Both variables have the same name as database table columns. There are many
possible better names, for example v_country_name and v_median_age.

3. Examine the declarations in question 2. Change the declarations so that they use the

%TYPE attribute.

country_name wf_countries.country_name%TYPE;
median_age wf_countries.median_age%TYPE;

4. In your own words, describe why using the %TYPE attribute is better than hard-

coding data types. Can you explain how you could run into problems in the future by
hard-coding the data types of the country_name and median_age variables in question
2?

It is better to use the %TYPE attribute rather than hard-coding data types because
it is possible that the table definition for the underlying data will change. For
example, a country may change its name to a value longer than 50 characters. If this
were to happen, the COUNTRY_NAME column definition in the
WF_COUNTRIES table would need to be altered.

Oracle Academy 39 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

5. Create the following anonymous block:

BEGIN
 DBMS_OUTPUT.PUT_LINE('Hello World');
END;

A. Add a declarative section to this PL/SQL block. In the declarative section, declare
 the following variables:

• A variable named TODAY of datatype DATE. Initialize TODAY with
SYSDATE.

• A variable named TOMORROW with the same datatype as TODAY. Use the
%TYPE attribute to declare this variable.

DECLARE
 today DATE:=SYSDATE;
 tomorrow today%TYPE;
BEGIN
 DBMS_OUTPUT.PUT_LINE('Hello World');
END;

A. In the executable section, initialize the TOMORROW variable with an expression

that calculates tomorrow’s date (add 1 to the value in TODAY). Print the value of
TODAY and TOMORROW after printing ‘Hello World’.

DECLARE
 today DATE:=SYSDATE;
 tomorrow today%TYPE;
BEGIN
 tomorrow := today + 1;
 DBMS_OUTPUT.PUT_LINE('Hello World');
 DBMS_OUTPUT.PUT_LINE(today);
 DBMS_OUTPUT.PUT_LINE(tomorrow);
END;

Oracle Academy 40 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

SECTION 2 LESSON 5 - Review of SQL Joins

Terminology
1. _Outer join________________ Combines rows that have equivalent values for the
specified columns plus those rows in one of the tables that have no matching value in the
other table.
2. _Cartesian product____________ When a join query does not specify a condition in
the WHERE clause.
3. _Equijoin_________________ Sometimes called a simple join, it combines rows that
have equal values for the specified columns.
4. _Nonequijoin________________ Combines tables that have no exact matching
columns.

Try It/Solve It
1. Write and test an equijoin statement that lists each country’s name, currency code,

and currency name. Order the list by country name.

SELECT c.country_name, cu.currency_code, cu.currency_name
 FROM wf_countries c, wf_currencies cu
 WHERE c.currency_code = cu.currency_code
 ORDER BY c.country_name;

2. Write and test an equijoin statement that lists each language and the country or

countries where it is official.

SELECT l.language_name, c.country_name
 FROM wf_countries c, wf_spoken_languages sl, wf_languages l
 WHERE c.country_id = sl.country_id
 AND sl.language_id = l.language_id
 AND sl.official = 'Y';

3. List the name of each country, its population, and the name of its region. Order the

list by region name.

SELECT c.country_name, c.population, r.region_name
 FROM wf_world_regions r, wf_countries c
 WHERE r.region_id = c.region_id
 ORDER by r.region_name;

Oracle Academy 41 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

4. Display a list of currencies whose name begins with “R” and the country or countries
in which they are used. Include currencies which are not used in any country.

SELECT c.country_name, cu.currency_name
 FROM wf_countries c, wf_currencies cu
 WHERE c.currency_code(+) = cu.currency_code
 AND cu.currency_name LIKE 'R%';

(Outer join output should include the Renminbi, which is not used in any country.)

5. There are 100 rows in table A and 250 rows in table B. The Cartesian product of A

and B would yield this number of rows:

A. 250
B. 25000
C. 100
D. none of the above

6. Which statement is definitely wrong?

A. SELECT e.employee_id, d.dept_id
 FROM employees e, department d
 WHERE e.dept_id = d.dept_id(+);

B. SELECT e.employee_id, d.dept_id
 FROM employees e, department d
 WHERE e.dept_id (+)= d.dept_id(+);

C. SELECT e.employee_id, d.dept_id
 FROM employees e, department d
 WHERE e.dept_id (+)= d.dept_id;

D. none of the above

Oracle Academy 42 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

7. Which statement’s results will include departments with no employees?

A. SELECT e.employee_id, d.department_id
 FROM employees e, departments d
 WHERE e.department_id = d.department_id(+);

B. SELECT e.employee_id, d.department_id
 FROM employees e, departments d
 WHERE e.department_id (+)= d.department_id;

C. both A and B

D. none of the above

8. Which statement’s results will include employees with no department?

A. SELECT e.employee_id, d.department_id
 FROM employees e, departments d
 WHERE e.department_id = d.department_id(+);

B. SELECT e.employee_id, d.department_id
 FROM employees e, departments d
 WHERE e.department_id (+)= d.department_id;

C. both A and B

D. none of the above

Oracle Academy 43 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

9. Given the tables BEVERAGES and TEMPERATURE_RANGES, write a SQL
statement that will display the beverage, temperature, and range as defined by the low
and high values.

BEVERAGES
Beverage Temperature
Coffee 180
Wine 68
Soda 45

TEMPERATURE_RANGES
Range Low_Value High_Value
Hot 120 212
Room 60 119
Cool 32 59
Very cool 0 31

SELECT b.beverage, b.temp, t.range
 FROM beverages b, temperature_ranges t
 WHERE b.temp BETWEEN t.low_value AND t.high_value;

Oracle Academy 44 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

Extension Exercise

1. Write SQL scripts to create the beverage and temperature range tables from question

9. Create the tables in Application Express. Create anonymous PL/SQL blocks to
populate the tables with the data illustrated in exercise 10. Execute the blocks in
Application Express. Using the two tables, write one of each of the types of joins you
learned in this lesson (equijoin, nonequijoin, outer join, and Cartesian product).

--execute each statement separately

CREATE TABLE beverages (beverage VARCHAR2(15),
 temperature NUMBER);

CREATE TABLE temperature_ranges (range VARCHAR2(15),
 low_value NUMBER NOT NULL,
 high_value NUMBER NOT NULL);

BEGIN
 INSERT into temperature_ranges VALUES ('Hot',120, 212);
 INSERT into temperature_ranges VALUES('Room',60, 119);
 INSERT into temperature_ranges VALUES('Cool',32, 59);
 INSERT into temperature_ranges VALUES('Very cool',0, 31);
END;

BEGIN
 INSERT into beverages VALUES ('Coffee', 180);
 INSERT into beverages VALUES('Wine', 68);
 INSERT into beverages VALUES('Soda' ,45);
END;

<write one of each of the join types; there are many possibilities>

Oracle Academy 45 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

SECTION 2 LESSON 6 - Review of SQL Functions and Subqueries

Terminology
1. __Group Functions____________ These functions operate on a whole table or on a

specific grouping of rows to return one result.
2. __GROUP BY________________ Clause used in a query to divide the rows in a

table into smaller groups.
3. ___ALL_____________________ Operator used when the outer query WHERE

clause is designed to restrict rows based on all values returned from the inner query.
4. ___Multiple Row subqueries_____ Use multiple row operators and return more

than one row from the inner query.
5. __ANY_____________________ Operator used when the outer query WHERE

clause is designed to restrict rows based on any value returned from the inner query.
6. ___HAVING_________________ Clause used in a query to restrict groups.
7. ___Subquery_________________ A SELECT statement that is embedded in a

clause of another SQL statement.

Try It/Solve It
1. Write a SQL statement that will return the earliest independence date from

wf_countries.

SELECT MIN(date_of_independence)
 FROM wf_countries;

2. Without referring to the answer in question 1, write a SQL statement that lists the

name of the country with the earliest independence date.

SELECT country_name
 FROM wf_countries
 WHERE date_of_independence =
 (SELECT MIN(date_of_independence) FROM wf_countries);

3. Which country has the smallest area?

The Holy See (State of the Vatican City)

SELECT country_name
 FROM wf_countries
 WHERE area =
 (SELECT MIN(area) FROM wf_countries);

Oracle Academy 46 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

4. Write a SQL statement that lists the countries with the maximum highest elevation,
along with the highest elevation value.

SELECT country_name, highest_elevation
 FROM wf_countries
 WHERE highest_elevation =
 (SELECT MAX (highest_elevation) FROM wf_countries);

5. List the name of each country and the number of languages spoken in it. Order the

results by the number of languages, from the most to the least.

SELECT country_name, COUNT(language_id)
 FROM wf_spoken_languages sl, wf_countries c
 WHERE c.country_id = sl.country_id
 GROUP BY country_name
 ORDER BY COUNT(language_id) DESC;

6. List the name of each language and the number of countries it is spoken in. Order the

results by the number of countries, from the most to the least.

SELECT language_name, COUNT(country_id)
 FROM wf_spoken_languages sl, wf_languages l
 WHERE l.language_id = sl.language_id
 GROUP BY language_name
 ORDER BY COUNT(country_id) DESC;

7. List the name of each currency and the number of countries it is used in. Restrict the

list to those currencies which are used in more than one country.

SELECT currency_name, COUNT(country_id)
 FROM wf_currencies cc, wf_countries c
 WHERE c.currency_code = cc.currency_code
 GROUP BY currency_name
 HAVING COUNT(country_id) >1;

8. Write a SQL statement that displays the name of all official languages.

SELECT language_name
 FROM wf_languages
 WHERE language_id IN
 (SELECT language_id FROM wf_spoken_languages
 WHERE UPPER(official) = 'Y');

Oracle Academy 47 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

9. List the names of countries in the Oceania region.

SELECT country_name
 FROM wf_countries
 WHERE region_id =
 (SELECT region_id FROM wf_world_regions

 WHERE region_name = 'Oceania');

10. List the name of each country whose name is alphabetically greater than the names of
all countries in Western Europe (region_id 155). Use the ANY operator.

SELECT country_name
 FROM wf_countries
 WHERE country_name > ALL
 (SELECT country_name FROM wf_countries
 WHERE region_id = 155);

Oracle Academy 48 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

SECTION 2 LESSON 7 - Writing PL/SQL Executable Statements

Terminology

1. ____Explicit conversion______ Converts values from one data type to another by

using built-in functions.
2. ____Implicit conversion _____ Converts data types dynamically if they are mixed

in a statement.

Try It/Solve It
1. Examine the following code and then answer the questions.

DECLARE
 x VARCHAR2(20);
BEGIN
 x:= '123' + '456' ;
 DBMS_OUTPUT.PUT_LINE(x);
END;

A. What do you think the output will be when you run the above code?

Students may think that the answer might be: 579 or 123456 or Error

B. Now, run the code. What is the output?

579

B. In your own words, describe what happened when you ran the code. Did any

implicit conversions take place?

PL/SQL implicitly converted the VARCHAR2 values to the NUMBER format
and added them.

2. Write an anonymous PL/SQL block that assigns the programmer’s full name to a

variable, and then displays the number of characters in the name.

DECLARE
 v_name VARCHAR2(50) :='<Enter your full name>';
 v_length_name PLS_INTEGER;
BEGIN
 v_length_name := LENGTH(v_name);
 DBMS_OUTPUT.PUT_LINE(v_length_name);
END;

Oracle Academy 49 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

3. Write an anonymous PL/SQL block that uses today's date and outputs it in the format
of ‘Month dd, yyyy’. Store the date in a DATE variable called my_date. Create
another variable of the DATE type called v_last_day. Assign the last day of this
month to v_last_day. Display the value of v_last_day.

DECLARE
 my_date DATE := SYSDATE;
 v_last_day DATE;
BEGIN
 DBMS_OUTPUT.PUT_LINE(TO_CHAR (my_date, 'Month dd, yyyy'));
 v_last_day := LAST_DAY(my_date);
 DBMS_OUTPUT.PUT_LINE(v_last_day);
END;

4. Modify the program created in question 3 to add 45 days to today’s date and then

calculate and display the number of months between the two dates.

DECLARE
 my_date DATE := SYSDATE;
 new_date DATE;
 v_months_between NUMBER;
BEGIN
 new_date := my_date + 45;
 v_months_between := MONTHS_BETWEEN(new_date,my_date);
 DBMS_OUTPUT.PUT_LINE(v_months_between);
END;

Oracle Academy 50 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

5. Examine the following code and then answer the questions.

DECLARE
 x NUMBER(6);
BEGIN
 x := 5 + 3 * 2 ;
 DBMS_OUTPUT.PUT_LINE(x);
END;

A. What do you think the output will be when you run the above code?

Students may think that the answer might be: 16 or 11

B. Now run the code. What is the output?

11

C. In your own words, explain the results.

The order of operations tells you that multiplication takes precedence over (that
is, comes before) addition. Therefore, 3 * 2 is executed before 5 is added.

6. Examine the following code and then answer the question.

DECLARE
 v_number NUMBER;
 v_boolean BOOLEAN;
BEGIN
 v_number := 25;
 v_boolean := NOT(v_number > 30);
END;

What value is assigned to v_boolean?

TRUE. The condition (v_number > 30) is FALSE, and NOT FALSE = TRUE.

Oracle Academy 51 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

SECTION 2 LESSON 8 - Nested Blocks and Variable Scope

Terminology
1. __Exception handling________ Allows clean separation of the error processing

code from the executable code so that a program can continue operating in the
presence of errors.

2. __Qualifier________________ A label given to a block.
3. __Variable scope____________ Consists of all the blocks in which the variable is

either local (the declaring block) or global (nested blocks within the declaring block) .
4. __Exception propagating______ The exception reproduces itself in successive

enclosing blocks until a handler is found or there are no more blocks to search in.
5. __Variable visibility_________ The portion of the program where the variable can

be accessed without using a qualifier.

Try It / Solve It
1. Evaluate the PL/SQL block below and determine the value of each of the following

variables according to the rules of scoping.

DECLARE
 weight NUMBER(3) := 600;
 message VARCHAR2(255) := 'Product 10012';
BEGIN

 DECLARE
 weight NUMBER(3) := 1;
 message VARCHAR2(255) := 'Product 11001';
 new_locn VARCHAR2(50) := 'Europe';
 BEGIN
 weight := weight + 1;
 new_locn := 'Western ' || new_locn;
 -- Position 1 --
 END;

 weight := weight + 1;
 message := message || ' is in stock';
 -- Position 2 --
END;

A. The value of weight at position 1 is:
2

B. The value of new_locn at position 1 is:
Western Europe

Oracle Academy 52 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

C. The value of weight at position 2 is:
601

D. The value of message at position 2 is:
Product 10012 is in stock

E. The value of new_locn at position 2 is:
Out of range – new_locn is undefined in the outer block.

Students can test the accuracy of their answers, if desired, by entering and
running the following code:

DECLARE
 weight NUMBER(3) := 600;
 message VARCHAR2(255) := 'Product 10012';
BEGIN

 DECLARE
 weight NUMBER(3) := 1;
 message VARCHAR2(255) := 'Product 11001';
 new_locn VARCHAR2(50) := 'Europe';
 BEGIN
 weight := weight + 1;
 new_locn := 'Western ' || new_locn;
 -- Position 1 --
 DBMS_OUTPUT.PUT_LINE('At Position 1, weight = '||weight);
 DBMS_OUTPUT.PUT_LINE('At Position 1, new_locn= '||new_locn);
 END;

 weight := weight + 1;
 message := message || ' is in stock';
 -- Position 2 --
 DBMS_OUTPUT.PUT_LINE('At Position 2, weight = '||weight);
 DBMS_OUTPUT.PUT_LINE('At Position 2, message= '||message);
END;

Oracle Academy 53 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

2. Enter and run the following PL/SQL block, which contains a nested block. Look at
the output and answer the questions.

DECLARE
 v_employee_id employees.employee_id%TYPE;
 v_job employees.job_id%TYPE;
BEGIN
 SELECT employee_id, job_id INTO v_employee_id, v_job
 FROM employees
 WHERE employee_id = 100;

 DECLARE
 v_employee_id employees.employee_id%TYPE;
 v_job employees.job_id%TYPE;
 BEGIN
 SELECT employee_id, job_id INTO v_employee_id, v_job
 FROM employees
 WHERE employee_id = 103;
 DBMS_OUTPUT.PUT_LINE(v_employee_id|| ' is a '||v_job);
 END;

 DBMS_OUTPUT.PUT_LINE(v_employee_id|| ' is a '||v_job);
END;

A. Why does the inner block display the job_id of employee 103, not employee 100?

Because although both declarations of v_job are in scope and in the inner block,
the outer block’s declaration is not visible.

B. Why does the outer block display the job_id of employee 100, not employee 103?

Because the inner block’s declaration is out of scope in the outer block.

Oracle Academy 54 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

C. Modify the code to display the details of employee 100 in the inner block. Use
block labels.

<<outer_block>>
DECLARE
 v_employee_id employees.employee_id%TYPE;
 v_job employees.job_id%TYPE;
BEGIN
 SELECT employee_id, job_id INTO v_employee_id, v_job
 FROM employees
 WHERE employee_id = 100;

 <<inner_block>>
 DECLARE
 v_employee_id employees.employee_id%TYPE;
 v_job employees.job_id%TYPE;
 BEGIN
 SELECT employee_id, job_id INTO v_employee_id, v_job
 FROM employees
 WHERE employee_id = 103;
 DBMS_OUTPUT.PUT_LINE(outer_block.v_employee_id||
 ' is a '||outer_block.v_job);
 END;

 DBMS_OUTPUT.PUT_LINE(v_employee_id||' is a '||v_job);
END;

3. Enter and run the following PL/SQL block. Explain the output. Note: the WHEN

OTHERS handler successfully handles any type of exception which occurs.

DECLARE
 v_number NUMBER(2);
BEGIN
 v_number := 9999;
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('An exception has occurred');
END;

An exception has occurred because the 4-digit value 9999 is too large to be assigned
to a NUMBER(2) variable. The block’s exception section has handled the exception
successfully and displayed ‘An exception has occurred’. The exception has NOT
been propagated back to the calling environment (Application Express) which
therefore reports ‘Statement Processed’, meaning: success.

Oracle Academy 55 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

4. Modify the block in question 3 to omit the exception handler, then re-run the block.
Explain the output.

DECLARE
 v_number NUMBER(2);
BEGIN
 v_number := 9999;
END;

The block does not handle the exception, which therefore propagates back to
Application Express. Application Express displays an ‘ORA-06502: PL/SQL:
numeric or value error’ message.

5. Enter and run the following code and explain the output.

DECLARE
 v_number NUMBER(4);
BEGIN
 v_number := 1234;

 DECLARE
 v_number NUMBER(4);
 BEGIN
 v_number := 5678;
 v_number := 'A character string';
 END;

EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('An exception has occurred');
 DBMS_OUTPUT.PUT_LINE('The number is: '||v_number);
END;

The inner block’s attempt to assign a character string to a NUMBER variable
causes an exception. The exception is not handled in the inner block, which
therefore propagates the exception to the outer block. The outer block successfully
handles the exception.

The number 1234 (not 5678) is displayed because the inner block’s v_number is out
of scope in the outer block.

Oracle Academy 56 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

Oracle Academy 57 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

SECTION 2 LESSON 9 - Good Programming Practices

Terminology
No new vocabulary for this lesson.

Try It/Solve It
1. Enter and run the following PL/SQL block. It will execute correctly if you have

entered it correctly, but it contains some examples of bad programming practice.

A. Modify the block to use good programming practice, and re-run the block.

B. Your modified block should contain examples of the following good
programming practices: explicit data type conversions, meaningful and consistent
variable names, use of %TYPE, upper and lowercase conventions, single and
multi-line comments, and clear indentation.

DECLARE
 myvar1 VARCHAR2(20);
 myvar2 number(4);
BEGIN
SELECT country_name INTO myvar1
FROM wf_countries WHERE country_id = 1246;
 myvar2 :=
 '1234';
 MYVAR2 := myvar2 * 2;
 DBMS_OUTPUT.PUT_LINE(myvar1);
 End;

Students answers will vary, especially when inserting comments (there are many
possibilities). A sample answer could be:

DECLARE
 v_country_name wf_countries.country_name%TYPE;
 v_number NUMBER(4);
BEGIN
 /* Read the country name of Barbados from the database
 and assign it to the first variable */
 SELECT country_name INTO v_country_name
 FROM wf_countries
 WHERE country_id = 1246;
 v_number := TO_NUMBER('1234'); -- or v_number := 1234;
 v_number := v_number * 2;
 DBMS_OUTPUT.PUT_LINE(v_country_name);
END;

	SECTION 2 LESSON 1 - Using Variables in PL/SQL
	Slide 1: Using Variables in PL/SQL
	Slide 2: What Will I Learn?
	Slide 3: Why Learn It?
	Slide 4: Tell Me / Show Me –Use of Variables
	Slide 5: Tell Me / Show Me – Handling Variables in PL/SQL
	Slide 6: Tell Me / Show Me – Declaring Variables
	Slide 7: Tell Me / Show Me – Declaring Variables: Syntax
	Slide 8: Tell Me / Show Me – Declaring Variables: Syntax (continued)
	Slide 9: Tell Me / Show Me – Initializing Variables
	Slide 10: Tell Me / Show Me – Declaring and Initializing Variables: Examples
	Slide 11: Tell Me / Show Me – Declaring and Initializing Variables: Examples (continued)
	Slide 12: Tell Me / Show Me – Assigning Values in the Executable Section
	Slide 13: Tell Me / Show Me – Assigning Values in the Executable Section (continued)
	Slide 14: Tell Me / Show Me – Assigning Values in the Executable Section (continued)
	Slide 15: Tell Me / Show Me – Passing Variables as Parameters to PL/SQL Subprograms
	Slide 16: Tell Me / Show Me – Assigning Variables to PL/SQL Subprogram Output
	Slide 17: Tell Me / Show Me – Terminology
	Slide 18: Summary
	Slide 19: Try It / Solve It

	SECTION 2 LESSON 2 – Recognizing PL/SQL Lexical Units
	Slide 1: Recognizing PL/SQL Lexical Units
	Slide 2: What Will I Learn?
	Slide 3: Why Learn It?
	Slide 4: Tell Me / Show Me – Lexical Units in a PL/SQL Block
	Slide 5: Tell Me / Show Me – Identifiers
	Slide 6: Tell Me / Show Me – Identifiers (continued)
	Slide 7: Tell Me / Show Me – Properties of an Identifier
	Slide 8: Tell Me / Show Me – Valid and Invalid Identifiers
	Slide 9: Tell Me / Show Me – Reserved Words
	Slide 10: Tell Me / Show Me – Reserved Words (continued)
	Slide 11: Tell Me / Show Me – Reserved Words (continued)
	Slide 12: Tell Me / Show Me – Delimiters
	Slide 13: Tell Me / Show Me – Literals
	Slide 14: Tell Me / Show Me – Character Literals
	Slide 15: Tell Me / Show Me – Numeric Literals
	Slide 16: Tell Me / Show Me – Boolean Literals
	Slide 17: Tell Me / Show Me – Comments
	Slide 18: Tell Me / Show Me – Syntax for Commenting Code
	Slide 19: Tell Me / Show Me – Terminology
	Slide 20: Summary
	Slide 21: Try It / Solve It

	SECTION 2 LESSON 3 – Recognizing Data Types
	Slide 1: Recognizing Data Types
	Slide 2: What Will I Learn?
	Slide 3: Why Learn It?
	Slide 4: Tell Me / Show Me – PL/SQL Data Types
	Slide 5: Tell Me / Show Me – Scalar Data Types
	Slide 6: Tell Me / Show Me – Scalar Data Types: Character (or String)
	Slide 7: Tell Me / Show Me – Scalar Data Types: Number
	Slide 8: Tell Me / Show Me – Scalar Data Types: Date
	Slide 9: Tell Me / Show Me – Scalar Data Types: Date (continued)
	Slide 10: Tell Me / Show Me – Scalar Data Types: Boolean
	Slide 11: Tell Me / Show Me – Composite Data Types
	Slide 12: Tell Me / Show Me – Composite Data Types (continued)
	Slide 13: Tell Me / Show Me – LOB Data Type
	Slide 14: Tell Me / Show Me – LOB Data Type
	Slide 15: Tell Me / Show Me – Terminology
	Slide 16: Summary
	Slide 17: Try It / Solve It

	SECTION 2 LESSON 4 - Using Scalar Data Types
	Slide 1: Using Scalar Data Types
	Slide 2: What Will I Learn?
	Slide 3: Why Learn It?
	Slide 4: Tell Me / Show Me – Declaring Character Variables
	Slide 5: Tell Me / Show Me – Declaring Number Variables
	Slide 6: Tell Me / Show Me – Declaring Date Variables
	Slide 7: Tell Me / Show Me – Declaring Boolean Variables
	Slide 8: Tell Me / Show Me – Declaring Boolean Variables
	Slide 9: Tell Me / Show Me – Guidelines for Declaring and Initializing PL/SQL Variables
	Slide 10: Tell Me / Show Me – Anchoring Variables with the %TYPE Attribute
	Slide 11: Tell Me / Show Me – %TYPE Attribute
	Slide 12: Tell Me / Show Me – %TYPE Attribute (continued)
	Slide 13: Tell Me / Show Me – Declaring Variables with the %TYPE Attribute
	Slide 14: Tell Me / Show Me – Advantages of the %TYPE Attribute
	Slide 15: Tell Me / Show Me – %TYPE Attribute
	Slide 16: Tell Me / Show Me – Terminology
	Slide 17: Summary
	Slide 18: Try It / Solve It

	SECTION 2 LESSON 5 - Review of SQL Joins
	Slide 1: Review of SQL Joins
	Slide 2: What Will I Learn?
	Slide 3: Why Learn It?
	Slide 4: Tell Me / Show Me - Equijoin
	Slide 5: Tell Me / Show Me – Equijoin
	Slide 6: Tell Me / Show Me – Nonequijoin
	Slide 7: Tell Me / Show Me – Nonequijoin (continued)
	Slide 8: Tell Me / Show Me – Outer Join
	Slide 9: Tell Me / Show Me – Outer Join (continued)
	Slide 10: Tell Me / Show Me – Cartesian Product
	Slide 11: Tell Me / Show Me – Cartesian Product (continued)
	Slide 12: Tell Me / Show Me – Terminology
	Slide 13: Summary
	Slide 14: Try It / Solve It

	SECTION 2 LESSON 6 - Review of SQL Group Functions and Subqueries
	Slide 1: Review of SQL Group Functions and Subqueries
	Slide 2: What Will I Learn?
	Slide 3: Why Learn It?
	Slide 4: Tell Me / Show Me – Group Functions
	Slide 5: Tell Me / Show Me – Group Functions (continued)
	Slide 6: Tell Me / Show Me – Group Functions (continued)
	Slide 7: Tell Me / Show Me – Group Functions (continued)
	Slide 8: Tell Me / Show Me – Group Functions (continued)
	Slide 9: Tell Me / Show Me – GROUP BY
	Slide 10: Tell Me / Show Me – HAVING
	Slide 11: Tell Me / Show Me – HAVING (continued)
	Slide 12: Tell Me / Show Me – Subqueries
	Slide 13: Tell Me / Show Me – Subqueries (continued)
	Slide 14: Tell Me / Show Me – Group Functions and Subqueries
	Slide 15: Tell Me / Show Me – Group Functions
	Slide 16: Tell Me / Show Me – Multiple-Row Subqueries
	Slide 17: Tell Me / Show Me – Multiple-Row Subqueries (continued)
	Slide 18: Tell Me / Show Me – ANY and ALL Operators
	Slide 19: Tell Me / Show Me – ANY Operator
	Slide 20: Tell Me / Show Me – ALL Operator
	Slide 21: Tell Me / Show Me – Terminology
	Slide 22: Summary
	Slide 23: Try It / Solve It

	SECTION 2 LESSON 7 - Writing PL/SQL Executable Statements
	Slide 1: Writing PL/SQL Executable Statements
	Slide 2: What Will I Learn?
	Slide 3: Why Learn It?
	Slide 4: Tell Me / Show Me – Assigning New Values to Variables
	Slide 5: Tell Me / Show Me – SQL Functions in PL/SQL
	Slide 6: Tell Me / Show Me – SQL Functions in PL/SQL (continued)
	Slide 7: Tell Me / Show Me – Character Functions
	Slide 8: Tell Me / Show Me – Examples of Character Functions
	Slide 9: Tell Me / Show Me – Number Functions
	Slide 10: Tell Me / Show Me – Examples of Number Functions
	Slide 11: Tell Me / Show Me – Date Functions
	Slide 12: Tell Me / Show Me – Examples of Date Functions
	Slide 13: Tell Me / Show Me – Data Type Conversion
	Slide 14: Tell Me / Show Me – Implicit Conversions
	Slide 15: Tell Me / Show Me – Examples of Implicit Conversion
	Slide 16: Tell Me / Show Me – Drawbacks of Implicit Conversions
	Slide 17: Tell Me / Show Me – Drawbacks of Implicit Conversions (continued)
	Slide 18: Tell Me / Show Me – Explicit Conversions
	Slide 19: Tell Me / Show Me – Examples of Explicit Conversions
	Slide 20: Tell Me / Show Me – Examples of Explicit Conversions (continued)
	Slide 21: Tell Me / Show Me – Data Type Conversion Example
	Slide 22: Tell Me / Show Me – Operators in PL/SQL
	Slide 23: Tell Me / Show Me – Operators in PL/SQL (continued)
	Slide 24: Tell Me / Show Me – Operators in PL/SQL (continued)
	Slide 25: Tell Me / Show Me – Terminology
	Slide 26: Summary
	Slide 27: Try It / Solve It

	SECTION 2 LESSON 8 - Nested Blocks and Variable Scope
	Slide 1: Nested Blocks and Variable Scope
	Slide 2: What Will I Learn?
	Slide 3: Why Learn It?
	Slide 4: Tell Me / Show Me – Nested Blocks
	Slide 5: Tell Me / Show Me – Nested Blocks (continued)
	Slide 6: Tell Me / Show Me – Variable Scope
	Slide 7: Tell Me / Show Me – Variable Scope
	Slide 8: Tell Me / Show Me – Local and Global Variables
	Slide 9: Tell Me / Show Me – Local and Global Variables (continued)
	Slide 10: Tell Me / Show Me – Variable Scope
	Slide 11: Tell Me / Show Me – Variable Naming
	Slide 12: Tell Me / Show Me – Variable Visibility
	Slide 13: Tell Me / Show Me – Variable Visibility (continued)
	Slide 14: Tell Me / Show Me – Variable Visibility (continued)
	Slide 15: Tell Me / Show Me – Qualifying an Identifier
	Slide 16: Tell Me / Show Me – Qualifying an Identifier (continued)
	Slide 17: Tell Me / Show Me – Scope of Exceptions in Nested Blocks
	Slide 18: Tell Me / Show Me – Trapping Exceptions with a Handler
	Slide 19: Tell Me / Show Me – Handling Exceptions in an Inner Block
	Slide 20: Tell Me / Show Me – Propagating Exceptions to an Outer Block
	Slide 21: Tell Me / Show Me – Propagating Exceptions to an Outer Block (continued)
	Slide 22: Tell Me / Show Me – Propagating Exceptions to a Subblock
	Slide 23: Tell Me / Show Me – Terminology
	Slide 24: Summary
	Slide 25: Try It / Solve It

	SECTION 2 LESSON 9 - Good Programming Practices
	Slide 1: Good Programming Practices
	Slide 2: What Will I Learn?
	Slide 3: Why Learn It?
	Slide 4: Tell Me / Show Me – Programming Practices
	Slide 5: Tell Me / Show Me – Programming Guidelines
	Slide 6: Tell Me / Show Me – Commenting Code
	Slide 7: Tell Me / Show Me – Case Conventions
	Slide 8: Tell Me / Show Me – Naming Conventions
	Slide 9: Tell Me / Show Me – Indenting Code
	Slide 10: Summary
	Slide 11: Try It / Solve It

	SECTION 2 LESSON 1 - Using Variables in PL/SQL
	Terminology
	Try It/Solve It

	SECTION 2 LESSON 2 - Recognizing PL/SQL Lexical Units
	Terminology
	Try It/Solve It
	Lexical Unit

	SECTION 2 LESSON 3 - Recognizing Data Types
	Terminology
	Try It/Solve It
	Data Type

	SECTION 2 LESSON 4 - Using Scalar Data Types
	Terminology
	Try It/Solve It

	SECTION 2 LESSON 5 - Review of SQL Joins
	Terminology
	Try It/Solve It
	Extension Exercise

	SECTION 2 LESSON 6 - Review of SQL Functions and Subqueries
	Terminology
	Try It/Solve It

	SECTION 2 LESSON 7 - Writing PL/SQL Executable Statements
	Terminology
	Try It/Solve It

	SECTION 2 LESSON 8 - Nested Blocks and Variable Scope
	Terminology
	Try It / Solve It

	SECTION 2 LESSON 9 - Good Programming Practices
	Terminology
	Try It/Solve It

