
Copyright © 2008, Oracle. All rights reserved.

Creating Packages

2

Creating Packages

Copyright © 2008, Oracle. All rights reserved.

What Will I Learn?
In this lesson, you will learn to:
• Describe the reasons for using a

package
• Describe the two components of a

package: specification and body
• Create packages containing related

variables, cursors, constants,
exceptions, procedures, and functions

• Create a PL/SQL block that invokes a
package construct

3

Creating Packages

Copyright © 2008, Oracle. All rights reserved.

Why Learn It?
You have already learned how to create
and use stored procedures and functions.

Suppose you want to create several
procedures and/or functions that are
related to each other. An application can
use either all of them or none of them.

Wouldn’t it be easier to create and manage
all the subprograms as a single database
object: a package?

In this lesson, you learn what a package is
and what its components are. You also
begin to learn how to create and use
packages.

4

Creating Packages

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
What Are PL/SQL Packages?

PL/SQL packages are containers that
enable you to group together related
PL/SQL subprograms, variables,
cursors, and exceptions.

For example, a Human Resources
package can contain hiring and firing
procedures, commission and bonus
functions, and tax-exemption
variables.

5

Creating Packages

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Components of a PL/SQL Package
A package consists of two parts stored separately in
the database:

• Package specification: The interface to your
applications. It must be created first. It declares
the constructs (procedures, functions, variables,
and so on) that are visible to the calling
environment.

• Package body: This contains the executable
code of the subprograms that were declared in
the package specification. It can also contain its
own variable declarations.

Package
specification

Package
body

6

Creating Packages

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Components of a PL/SQL Package (continued)

The detailed package body code is invisible to the
calling environment, which can see only the
specification.

If changes to the code are needed, the body can be
edited and recompiled without having to edit or
recompile the specification.

This two-part structure is an example of a modular
programming principle called encapsulation.

Package
specification

Package
body

7

Creating Packages

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Components of a PL/SQL Package (continued)

Package
specification

Package
body

Procedure A declaration;

Variable_1

Procedure A definition

BEGIN
…
END;

Procedure B definition …

Variable_3

Variable_2

8

Creating Packages

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Syntax for Creating the Package Specification
To create packages, you declare all public constructs within the
package specification.

• The OR REPLACE option drops and re-creates the package
specification.

• Variables declared in the package specification are initialized
to NULL by default.

• All the constructs declared in a package specification are
visible to users who are granted EXECUTE privilege on the
package.

CREATE [OR REPLACE] PACKAGE package_name
IS|AS

public type and variable declarations
public subprogram specifications

END [package_name];

9

Creating Packages

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Syntax for Creating the Package Specification (continued)

• package_name: Specifies a name for the package that must
be unique among objects within the owning schema. Including
the package name after the END keyword is optional.

• public type and variable declarations: Declares
public variables, constants, cursors, exceptions, user-defined
types, and subtypes.

• public subprogram specifications: Declares the
public procedures and/or functions in the package.

CREATE [OR REPLACE] PACKAGE package_name
IS|AS

public type and variable declarations
public subprogram specifications

END [package_name];

10

Creating Packages

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Creating the Package Specification

“Public” means that the package construct (variable, procedure,
function, and so on) can be seen and executed from outside the
package. All constructs declared in the package specification are
automatically public constructs.

The package specification should contain procedure and function
headings terminated by a semicolon, without the IS (or AS)
keyword and its PL/SQL block.

The implementation (writing the detailed code) of a procedure or
function that is declared in a package specification is done in the
package body.

The next two slides show code examples.

11

Creating Packages

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Example of Package Specification: check_emp_pkg

• G_MAX_LENGTH_OF_SERVICE is a constant declared and
initialized in the specification.

• CHK_HIREDATE and CHK_DEPT_MGR are two public
procedures declared in the specification. Their detailed code
is written in the package body.

CREATE OR REPLACE PACKAGE check_emp_pkg
IS
g_max_length_of_service CONSTANT NUMBER := 100;
PROCEDURE chk_hiredate
(p_date IN employees.hire_date%TYPE);

PROCEDURE chk_dept_mgr
(p_empid IN employees.employee_id%TYPE,
p_mgr IN employees.manager_id%TYPE);

END check_emp_pkg;

12

Creating Packages

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Package Specification: A Second Example

Remember that a cursor is a type of variable.

CREATE OR REPLACE PACKAGE manage_jobs_pkg
IS
g_todays_date DATE := SYSDATE;
CURSOR jobs_curs IS
SELECT employee_id, job_id FROM employees
ORDER BY employee_id;

PROCEDURE update_job
(p_emp_id IN employees.employee_id%TYPE);

PROCEDURE fetch_emps
(p_job_id IN employees.job_id%TYPE,
p_emp_id OUT employees.employee_id%TYPE);

END manage_jobs_pkg;

13

Creating Packages

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Syntax for Creating the Package Body
Create a package body to contain the detailed code for all the
subprograms declared in the specification.

• The OR REPLACE option drops and re-creates the package
body.

• “Subprogram bodies” must contain the code of all the
subprograms declared in the package specification.

• Private types and variables, and BEGIN initialization
statements, are discussed in later lessons.

CREATE [OR REPLACE] PACKAGE BODY package_name IS|AS
private type and variable declarations
subprogram bodies

[BEGIN initialization statements]
END [package_name];

14

Creating Packages

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Syntax for Creating the Package Body (continued)

• package_name specifies a name for the package that must
be the same as its package specification. Using the package
name after the END keyword is optional.

• subprogram bodies specifies the full implementation (the
detailed PL/SQL code) of all private and/or public procedures
or functions.

CREATE [OR REPLACE] PACKAGE BODY package_name IS|AS
private type and variable declarations
subprogram bodies

[BEGIN initialization statements]
END [package_name];

15

Creating Packages

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Creating the Package Body
When creating a package body, do the following:

• Specify the OR REPLACE option to overwrite an existing
package body.

• Define the subprograms in an appropriate order. The basic
principle is that you must declare a variable or subprogram
before it can be referenced by other components in the
same package body.

• Every subprogram declared in the package specification
must also be included in the package body.

16

Creating Packages

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Example of Package Body: check_emp_pkg
CREATE OR REPLACE PACKAGE BODY check_emp_pkg IS
PROCEDURE chk_hiredate
(p_date IN employees.hire_date%TYPE)
IS BEGIN
IF MONTHS_BETWEEN(SYSDATE, p_date) >
g_max_length_of_service * 12 THEN
RAISE_APPLICATION_ERROR(-20200, 'Invalid Hiredate');

END IF;
END chk_hiredate;
PROCEDURE chk_dept_mgr
(p_empid IN employees.employee_id%TYPE,
p_mgr IN employees.manager_id%TYPE)
IS BEGIN ...

END chk_dept_mgr;
END check_emp_pkg;

17

Creating Packages

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Changing the Package Body Code

Suppose now you want to make a change to the CHK_HIREDATE
procedure, for example, to raise a different error message.

You must edit and recompile the package body, but you do not
need to recompile the specification. Remember, the specification
can exist without the body (but the body cannot exist without the
specification).

Because the specification is not recompiled, you do not need to
recompile any applications (or other PL/SQL subprograms) that
are already invoking the package procedures.

18

Creating Packages

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Recompiling the Package Body: check_emp_pkg
CREATE OR REPLACE PACKAGE BODY check_emp_pkg IS
PROCEDURE chk_hiredate
(p_date IN employees.hire_date%TYPE)
IS BEGIN
IF MONTHS_BETWEEN(SYSDATE, p_date) >
g_max_length_of_service * 12 THEN
RAISE_APPLICATION_ERROR(-20201, 'Hiredate Too Old');

END IF;
END chk_hiredate;
PROCEDURE chk_dept_mgr
(p_empid IN employees.employee_id%TYPE,
p_mgr IN employees.manager_id%TYPE)
IS BEGIN ...

END chk_dept_mgr;
END check_emp_pkg;

19

Creating Packages

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me

Invoking Subprograms in Packages

You invoke packaged procedures and functions in the same way
as non-packaged subprograms, except that you must dot-prefix
the subprogram name with the package name. For example:

What if you forget the names of the procedures or which
parameters you have to pass to them?

BEGIN
check_emp_pkg.chk_hiredate('17-Jul-95');

END;

20

Creating Packages

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me

You can DESCRIBE a package in the same way as you can
DESCRIBE a table or view:

DESCRIBE check_emp_pkg

You cannot DESCRIBE individual packaged subprograms, only
the whole package.

21

Creating Packages

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Reasons for Using Packages
• Modularity: Related programs and variables
can be grouped together.

• Hiding information: Only the declarations in
the package specification are visible to
invokers. Application developers do not need to
know the details of the package body code.

• Easier maintenance: You can change and
recompile the package body code without
having to recompile the specification.
Therefore, applications that already use the
package do not need to be recompiled.

22

Creating Packages

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Terminology
Key terms used in this lesson include:

PL/SQL packages
Package specification
Package body
Encapsulation
OR REPLACE

23

Creating Packages

Copyright © 2008, Oracle. All rights reserved.

Summary
In this lesson, you learned to:
• Describe the reasons for using a

package
• Describe the two components of a

package: specification and body
• Create packages containing related

variables, cursors, constants,
exceptions, procedures, and functions

• Create a PL/SQL block that invokes a
package construct

24

Creating Packages

Copyright © 2008, Oracle. All rights reserved.

Try It / Solve It
The exercises in this lesson cover
the following topics:
• Describing packages and listing

their components
• Identifying a package

specification and body
• Creating packages containing

related variables, cursors,
constants, exceptions,
procedures, and functions

• Invoking a package construct

	Creating Packages
	What Will I Learn?
	Why Learn It?
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Summary
	Try It / Solve It

