
Copyright © 2009, Oracle. All rights reserved.

Creating PL/SQL Blocks

2

Creating PL/SQL Blocks

Copyright © 2009, Oracle. All rights reserved.

What Will I Learn?
In this lesson, you will learn how to:
• Describe the structure of a PL/SQL

block
• Identify the different types of PL/SQL

blocks
• Identify PL/SQL programming

environments
• Create and execute an anonymous

PL/SQL block
• Output messages in PL/SQL

3

Creating PL/SQL Blocks

Copyright © 2009, Oracle. All rights reserved.

Why Learn It?
This lesson introduces the PL/SQL block
structure, the basic unit in PL/SQL. All
PL/SQL programs are comprised of blocks,
so you use blocks a lot! You will learn the
structure of a PL/SQL block and create one
kind of block: an anonymous block.

After learning about the different
environments you can use to develop your
PL/SQL programs, you will also begin
coding PL/SQL in the Application Express
development environment.

4

Creating PL/SQL Blocks

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
PL/SQL Block Structure
A PL/SQL block consists of three sections:

Declarative (optional): The declarative section
begins with the keyword DECLARE and ends when
your executable section starts.

Executable (mandatory): The executable section
begins with the keyword BEGIN and ends with END.
Observe that END is terminated with a semicolon. The
executable section of a PL/SQL block can include any
number of nested PL/SQL blocks.

Exception handling (optional): The exception
section is nested within the executable section. This
section begins with the keyword EXCEPTION.

Presenter
Presentation Notes
PL/SQL is made up of blocks of code. A block is a section of code that provides execution and scoping boundaries for variable declarations and exception handling. You can create anonymous blocks, which have no name, and named blocks which are called procedures or functions. We can also have nested blocks of code, which are blocks of code inside other blocks of code. A block of code in PL/SQL can have up to four parts. 3 of these parts are optional and one is required. The first part is the header. The second part is the declaration section and begins with the word DECLARE. The third part, which is mandatory, is the executable section. It begins with the word BEGIN and always ends with the word END and a semicolon. Lastly, is the optional exception section used for error handling. Notice the syntax for a procedure on the left side of the slide. On the right side there are two anonymous blocks. They are not named and not saved by the Oracle database.

5

Creating PL/SQL Blocks

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me

PL/SQL Block Structure (continued)

DECLARE (Optional):
- Variables, cursors, and user-defined exceptions

BEGIN (Mandatory):
- SQL statements
- PL/SQL statements

EXCEPTION (Optional)
- Actions to perform when errors occur

END; (Mandatory)

In a PL/SQL block, the keywords DECLARE, BEGIN, and EXCEPTION are
not terminated by a semicolon. However, the keyword END, all SQL
statements, and PL/SQL statements must be terminated with a
semicolon.

6

Creating PL/SQL Blocks

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me

Section Description Inclusion

Declarative
(DECLARE)

Contains declarations of all variables,
constants, cursors, and user-defined
exceptions that are referenced in the
executable and exception sections.

Optional

Executable
(BEGIN …
END;)

Contains SQL statements to retrieve data
from the database and PL/SQL statements
to manipulate data in the block. Must
contain at least one statement.

Mandatory

Exception
(EXCEPTION)

Specifies the actions to perform when
errors and abnormal conditions arise in the
executable section.

Optional

PL/SQL Block Structure (continued)

7

Creating PL/SQL Blocks

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
The PL/SQL Compiler

Every program written in a high-level programming language (C,
Java, PL/SQL and so on) must be checked and translated into
binary code (ones and zeros) before it can execute. The software
that does this checking and translation is called a compiler.

The PL/SQL compiler executes automatically when needed. It
checks not only that every word is spelled correctly, but also that
any referenced database objects (such as tables) exist, and that
the user has the necessary privileges on them.

Presenter
Presentation Notes
Let’s review the PL/SQL Compiler. Every program written in a high-level programming language such as C, Java, PL/SQL, and other high level languages must be checked and translated into binary code before it can execute. The PL/SQL compiler is built into the Oracle database and executes automatically when it is needed. It checks not only that every word is spelled correctly, but also any referenced database objects, such as tables, exist, and that the user has the necessary privileges to view them or to change them. The compiler does a lot of work behind the scenes in a very short amount of time.

8

Creating PL/SQL Blocks

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me

Block Types

A PL/SQL program comprises one or more blocks.
These blocks can be entirely separate or nested
within another.

There are three types of blocks that can make up a
PL/SQL program. They are:

• Anonymous blocks
• Procedures
• Functions

Subprograms

Presenter
Presentation Notes
A PL/SQL program comprises one or more blocks that can be entirely separate or nested within each other. The two types of blocks that make up a PL/SQL program are anonymous blocks, which are not saved in the database, and named subprograms which can be either procedures or functions. The smallest meaningful grouping of code is known as a block.

9

Creating PL/SQL Blocks

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Anonymous Blocks
• Unnamed blocks
• Not stored in the database
• Declared inline at the point in an

application where they are executed
• Compiled each time the application is

executed
• Passed to the PL/SQL engine for

execution at run time
• You cannot invoke or call an

anonymous block because it does not
have a name and does not exist after it
is executed

[DECLARE]

BEGIN
--statements

[EXCEPTION]

END;

10

Creating PL/SQL Blocks

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Examples of Anonymous Blocks
1. No Declaration or exception sections, execution only

2. Declaration and execution sections, but no exception section

BEGIN
DBMS_OUTPUT.PUT_LINE('PL/SQL is easy!');

END;

DECLARE
v_date DATE := SYSDATE;

BEGIN
DBMS_OUTPUT.PUT_LINE(v_date);

END;

11

Creating PL/SQL Blocks

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Examples of Anonymous Blocks
3. Declaration and exception sections

DECLARE
v_country_name VARCHAR2(40);
v_region_id NUMBER;

BEGIN
SELECT country_name, region_id
INTO v_country_name, v_region_id
FROM countries WHERE country_id=‘CA’;

DBMS_OUTPUT.PUT_LINE ('The country name is: '
||v_country_name||' and is located in '
||v_region_id||'.') ;

EXCEPTION
WHEN TOO_MANY_ROWS THEN
DBMS_OUTPUT.PUT_LINE (' Your select statement retrieved
multiple rows. Consider using a cursor.');

END;

12

Creating PL/SQL Blocks

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Subprograms
• Are named PL/SQL blocks
• Are stored in the database
• Can be invoked whenever you

want depending on your
application

• Can be declared as procedures
or as functions
– Procedure: Performs an action
– Function: Computes and

returns a value

PROCEDURE name
IS
--variable declaration(s)

BEGIN
--statements

[EXCEPTION]

END;

FUNCTION name
RETURN datatype
--variable declaration(s)

IS
BEGIN
--statements
RETURN value;

[EXCEPTION]

END;

13

Creating PL/SQL Blocks

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Examples of Subprograms
1. Procedure to print the current date

2. Function to return the number of characters in a string

CREATE PROCEDURE print_date IS
v_date VARCHAR2(30);

BEGIN
SELECT TO_CHAR(SYSDATE,'Mon DD, YYYY')

INTO v_date
FROM DUAL;

DBMS_OUTPUT.PUT_LINE(v_date);
END;

CREATE FUNCTION num_characters (p_string IN VARCHAR2)
RETURN INTEGER IS
v_num_characters INTEGER;

BEGIN
SELECT LENGTH(p_string) INTO v_num_characters
FROM DUAL;
RETURN v_num_characters;

END;

14

Creating PL/SQL Blocks

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Program Constructs
The following table outlines a variety of different PL/SQL program
constructs that use the basic PL/SQL block. The constructs are
available based on the environment in which they are executed.

Application triggers
Application packages

Application procedures
or functions

Anonymous blocks
Tools constructs

Object types

Database triggers
Stored packages

Stored procedures or
functions

Database server
constructs

Object types

15

Creating PL/SQL Blocks

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
PL/SQL Programming Environments
There are many tools that provide an environment for developing
PL/SQL code. Oracle provides several tools that you can use to
write PL/SQL code. Some of the Oracle development tools are:

SQL*Workshop A component of Application
Express

SQL*Plus A command-line application

Jdeveloper &
SQL Developer

iSQL*Plus

GUI-integrated development
environments (IDEs)

A browser-based development
environment

16

Creating PL/SQL Blocks

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
PL/SQL Programming Environments: iSQL*Plus
iSQL*Plus: iSQL*Plus is a browser-based interface to SQL*Plus.
You can connect to a local or remote database by using
iSQL*Plus. It allows you to perform all the operations that you
can perform with the command-line version of SQL*Plus.

17

Creating PL/SQL Blocks

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me

Edit

Run

PL/SQL Programming
Environments: Oracle JDeveloper
JDeveloper is a Windows-based
application.
Using JDeveloper, you can create,
edit, test, and debug PL/SQL.
The JDeveloper Code Editor assists
in PL/SQL code development by
offering:
• Different colors for syntactical

components of the PL/SQL
language

• Features to locate procedures
and functions in supplied
packages

18

Creating PL/SQL Blocks

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
PL/SQL Programming Environments: Oracle Application
Express
Oracle Application Express is a browser-based web application
environment that offers a SQL Workshop component.

19

Creating PL/SQL Blocks

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Developing with SQL Workshop
When you log in to Oracle Application Express and choose SQL
Workshop, you can choose to use the SQL Commands option to
use the SQL command-line editor or you can choose the SQL
Scripts option to work within the Script Editor.

20

Creating PL/SQL Blocks

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
SQL Commands
You can use SQL
Commands to enter and
run a single SQL statement
or a single PL/SQL block.

A SQL script can contain
one or more SQL
statements and/or PL/SQL
blocks. Use SQL Scripts
to enter and run multi-
statement scripts.

21

Creating PL/SQL Blocks

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Using DBMS_OUTPUT.PUT_LINE

Look at this simple PL/SQL block and its
output:

How can you display the result ?

22

Creating PL/SQL Blocks

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Using DBMS_OUTPUT.PUT_LINE (continued)
Let’s add a call to DBMS_OUTPUT.PUT_LINE:

Now you can see the result !

23

Creating PL/SQL Blocks

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Using DBMS_OUTPUT.PUT_LINE (continued)

The DBMS_OUTPUT.PUT_LINE allows you to display results so
that you can check that your block is working correctly. It
allows you to display one character string at a time, although
this can be concatenated. Here are two more examples:

DECLARE
v_emp_count NUMBER;

BEGIN
DBMS_OUTPUT.PUT_LINE('PL/SQL is easy so far!');
SELECT COUNT(*) INTO v_emp_count FROM employees;
DBMS_OUTPUT.PUT_LINE(‘There are '||v_emp_count||' rows

in the employees table’);
END;

Presenter
Presentation Notes
Let’s review DBMS_OUTPUT.PUT_LINE. DBMS_OUTPUT is a PL/SQL package and PUT_LINE is a part of this package. The DBMS_OUTPUT package allows us to display results so that we can check to see if our block is working correctly. It will allow us to display one character string at a time, although we can concatenate character strings to display more meaningful information. In this code example the first DBMS_OUTPUT statement displays the literal value ‘PLSQL is easy so far’. The second DBMS_OUTPUT statement displays a combination of literal text and a variable that contains the number of employees in the employees table. The DBMS_OUTPUT statement is a very useful tool to programmers for error checking and debugging.

24

Creating PL/SQL Blocks

Copyright © 2009, Oracle. All rights reserved.

Tell Me/Show Me
Terminology
Key terms used in this lesson include:

Anonymous PL/SQL block
Compiler
Subprograms
Procedures
Functions

25

Creating PL/SQL Blocks

Copyright © 2009, Oracle. All rights reserved.

Summary
In this lesson, you learned how to:
• Describe the structure of a PL/SQL

block
• Identify the different types of PL/SQL

blocks
• Identify PL/SQL programming

environments
• Create and execute an anonymous

PL/SQL block
• Output messages in PL/SQL

26

Creating PL/SQL Blocks

Copyright © 2009, Oracle. All rights reserved.

Try It/Solve It
The exercises in this lesson cover the following
topics:
• Describing the structure of a PL/SQL block
• Identifying the block types of PL/SQL
• Identifying PL/SQL programming

environments
• Creating and executing an anonymous

PL/SQL block
• Outputting messages in PL/SQL

	Creating PL/SQL Blocks
	What Will I Learn?
	Why Learn It?
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Summary
	Try It/Solve It

