
MidTerm Project
Part II

Instructions for Students

You begin this MidTerm project by rewriting most of the anonymous blocks you created in
MidTerm Project I to become Procedures, Functions and Packages, with input parameters and
exceptions. You then add more programs to these packages, and finally you create a new
package and create a couple of database triggers. Whenever the anonymous blocks used bind
variables, you must change these to be IN parameters in the stored subprograms.

Project Setup: The Data
This project will build on the case study called STUDENT ADMINISTRATION or SA. A set of
database tables is used to manage schools’ course offerings as delivered by instructors in many
classes over time. Information is stored about classes that are offered, the students who take
classes, and the grades the students receive on various assessments. The school administrators
can use the SA database to manage the class offerings and to assign instructors. Teachers can
also use the SA database to track student performance. The database objects for this project are
already in your account and they are as follows:

Tables:

INSTRUCTORS
SECTIONS
COURSES
CLASSES
ASSESSMENTS
STUDENTS
ENROLLMENTS
CLASS_ASSESSMENTS
ERROR_LOG
GRADE_CHANGES

Sequence:
ASSESSMENT_ID_SEQ

Synonyms:
dept FOR sections
instr FOR instructors
enroll FOR enrollments
stu FOR students
cl_assess FOR class_assessments
cl FOR classes
cour FOR courses
assess FOR assessments

Oracle Academy 1 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

Part 1: Procedures, Functions and Packages

The Assignment and Deliverables:

In this section you start by re-writing the anonymous blocks from MidTerm I to become
procedures, functions and packages.

1. Find the file saved from called enroll_student_in_class.sql from MidTerm I. Convert this to

a procedure and have it accept a STU_ID and CLASS_ID as input parameters. Use “today’s
date” for the ENROLLMENT_DATE and the string ‘Enrolled’ for the STATUS. Raise an
exception if the accepted student is already enrolled in the accepted class. In your exception
handler, display a message stating the student is already enrolled in the class.

2. Find the file called drop_student_from_class.sql from MidTerm I. Convert it to a procedure
that accepts a STU_ID and CLASS_ID as input parameters. If the DELETE fails because the
student is not in the class, raise a user_defined exception to display a message stating the
student is not in the class.

3. Find the file called student_class_list.sql from MidTerm I. Rewrite it to be a procedure that
displays all of the classes a student has been enrolled in within the most recent 6 years. For
example: If you run your procedure on May 10, 2006, you should display all enrollments
between May 10, 2000 and May 10, 2006. Accept the STU_ID as an input parameter. For
each enrollment, display the ENROLLMENT_DATE, CLASS_ID and STATUS.

4. Find the file called add_new_classes.sql from MidTerm I. Rewrite it as a Procedure and have
it accept the following IN parameters:

a. Number of new classes required. Set a default value of 1.
b. Course id; For each new class, use “today”as the START_DATE.
c. Period, to specify what days the class meets.
d. Frequency, to specify how often it meets.
e. Instructor id, to specify who is teaching the class(s).

5. Find the file called course_roster.sql from MidTerm I and rewrite it as a procedure. Accept

the INSTR_ID and COURSE_ID as input parameters. For each ENROLLMENT, display:
CLASS_ID, STATUS, Student FIRST_NAME and LAST_NAME.

6. Find the file called convert_grade.sql from MidTerm I and rewrite it to be a function Use an
IN parameter to enter the number grade. RETURN a CHAR value. Use the following rules:
A:90 or above, B: >=80 and<90 , C: >=70 and < 80, D: >=60 and < 70, F:<60.

7. Find the file called student_count.sql and rewrite it as a function that will RETURN the
number of students in a particular class. Accept a CLASS_ID as an IN parameter.

Oracle Academy 2 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

8. Create a package called enrollments_package which will contain the procedures you created
in A, B, and C. Make all procedures public. Comment your procedures to explain their
purpose and functionality.

9. Find the program saved in the file create_assignment.sql. Rewrite it as a procedure that
accepts the assignment description as an input parameter.

10. Find the file called enter_student_grade.sql and rewrite it as a procedure that a teacher can

run to insert the student's grade on a particular assignment. Accept a NUMERIC_GRADE,
CLASS_ASSESSMENT_ID, CLASS_ID, STU_ID and ASSESSMENT_ID as IN
parameters. Use “today’s” date for the DATE_TURNED_IN.

11. Rewrite the program stored in the file show_missing_grades .sql to be a procedure. Accept a
start_date and end_date to establish a date range. Display only enrollments between those
two dates. Write your procedure so the start_date and end_date are optional. If both dates are
not entered, display all applicable enrollments for the past year, and include a note about the
date range. For each enrollment, list the CLASS_ID, STU_ID, and STATUS. Order the
output by ENROLLMENT_DATE with the most recent enrollments first.

12. Find the file called compute_average_grade.sql and rewrite it as a function. Accept a
CLASS_ID. Return the average grade.

13. Find the file called count_classes_per_course.sql and rewrite it as a function. Accept a
COURSE_ID. Return the number of classes offered for that course.

14. Convert the file show_class_offerings.sql to a procedure. Accept a start date and end date.
For each class found, display the CLASS_ID, START_DATE, instructor FIRST_NAME and
LAST_NAME, course TITLE and SECTION_CODE, and average grade. Find the average
grade by a call to the function compute_average_grade.

15. Create a package called admin_tools_package incorporating procedure and functions you
wrote in steps K to N. Make the following public: show_missing_grades,
show_class_offerings, count_classes_per_course. Make the following private:
compute_average_grade.

Oracle Academy 3 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

Part 2: Managing Students and Grades

The enrollments_package you created in Part 1 contains the following public procedures:

1. Procedure enroll_student_in_class (p_stu_id IN enrollments.stu_id%TYPE, p_class_id IN

enrollments.class_id%TYPE)
2. Procedure drop_student_from_class(p_stu_id IN enrollments.stu_id%TYPE, p_class_id IN

enrollments.class_id%TYPE)
3. Procedure student_class_list (p_stu_id IN enrollments.stu_id%TYPE)

The Assignment and Deliverables:
Modify the student_class_list procedure in the package, to add the following functionality:

1. Utilize the overloading feature of the PLSQL package, to overload the student_class_list

procedure as follows:
• When the STU_ID parameter is passed, the procedure should display a list of classes in

which the student has been enrolled, within the most recent 6 years.
• When the procedure is called without a parameter, the procedure should display a list of

classes for all students in which they have been enrolled, within the most recent 6 years.

2. Create a procedure read_external_file, to read an external text file stored outside the database

as an operating system text file. Use DBMS_OUTPUT to display the content of the external
file.

The external file is named ‘student_class_list.txt’ and is stored in the operating system
directory referenced by the Oracle directory object ‘'WF_FLAGS'.

Your output should look something like this:

Enrollment Report
Student Id Enrollment Date Class id
101 12-AUG-04 1
102 12-AUG-04 1
103 12-AUG-04 1
104 12-AUG-04 1
*** END OF REPORT ***

• Hints: The Exceptions used with UTL_FILE.GET_LINE:

• INVALID_FILEHANDLE
• INVALID_OPERATION
• READ_ERROR
• NO_DATA_FOUND
• VALUE_ERROR

• Directory object name is: 'WF_FLAGS' and must be referenced in capital letters.

Oracle Academy 4 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

Part 3: School Administrator’s Tools (admin_tools_package)

The admin_tools_package you created in Part I contains the following programs:

1. Procedure show_missing_grades (p_start_date IN DATE DEFAULT ADD_MONTHS
(SYSDATE,-12), p_end_date IN DATE DEFAULT SYSDATE)

2. Procedure show_class_offerings (p_start_date IN DATE, p_end_date IN DATE)
3. Function count_classes_per_course (p_course_id IN classes.course_id%TYPE) RETURN

NUMBER
4. Function compute_average_grade (p_class_id IN enrollments.class_id%TYPE) RETURN

NUMBER
This function is private in this package.

The Assignment and Deliverables:

1. Utilize the forward declaration concept to be able to move the body of the private function
compute_average_grade to anywhere in the package body. Recompile and test the package.

Oracle Academy 5 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

Part 4: Create manage_triggers_package

The Assignment and Deliverables:

1. Create a package manage_triggers_package that contains two overloaded functions called

manage_triggers. The functions are invoked to disable/enable all triggers for a table, or to
compile a trigger.
• Use Native Dynamic SQL to execute the DDL commands programmatically.
• Code an exception handling block to display a message if the DDL command fails.

Use the following guidelines:
• When the function is called with two parameters: manage_triggers (p_tablename,

p_action)
• Pass a table name to P_TABLENAME parameter.
• Pass ‘disable’ or ‘enable’ string to P_ACTION parameter.

• When the function is called with only one parameter manage_triggers (p_trigger_name)
• Pass a trigger name to P_TRIGGER_NAME parameter.

Hints:

• Use the ALTER TABLE command to disable/enable all triggers of a table
programmatically.

• Use the ALTER TRIGGER command to compile the trigger programmatically.

Oracle Academy 6 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

Oracle Academy 7 Database Programming with PL/SQL
 Copyright © 2009, Oracle. All rights reserved.

Part 5: Create Database Triggers

The Assignment and Deliverables:

1. Create the grade_change_history table as follows:

CREATE TABLE grade_change_history
 (time_stamp DATE,
 stu_id NUMBER(7,0),
 class_id NUMBER(6,0),
 enroll_date DATE,
 old_final_grade CHAR(1),
 new_final_grade CHAR(1));

2. Create a row level trigger audit_grade_change to keep a history of all
the changes made to students’ final letter grade. The grade change is
recorded every time the FINAL_LETTER_GRADE field is updated in the
ENROLLMENTS table.

• Every time the trigger is fired, it should insert a record in the

GRADE_CHANGE_HISTORY table, recording the old grade and the new grade for each
student.

• Test your trigger by updating the final_letter_grade for a student, in the

ENROLLMENTS table.

	Project Setup: The Data
	Part 1: Procedures, Functions and Packages
	4. Find the file called add_new_classes.sql from MidTerm I. Rewrite it as a Procedure and have it accept the following IN parameters:
	a. Number of new classes required. Set a default value of 1.
	b. Course id; For each new class, use “today”as the START_DATE.
	c. Period, to specify what days the class meets.
	d. Frequency, to specify how often it meets.
	e. Instructor id, to specify who is teaching the class(s).
	12. Find the file called compute_average_grade.sql and rewrite it as a function. Accept a CLASS_ID. Return the average grade.
	13. Find the file called count_classes_per_course.sql and rewrite it as a function. Accept a COURSE_ID. Return the number of classes offered for that course.
	14. Convert the file show_class_offerings.sql to a procedure. Accept a start date and end date. For each class found, display the CLASS_ID, START_DATE, instructor FIRST_NAME and LAST_NAME, course TITLE and SECTION_CODE, and average grade. Find the average grade by a call to the function compute_average_grade.
	15. Create a package called admin_tools_package incorporating procedure and functions you wrote in steps K to N. Make the following public: show_missing_grades, show_class_offerings, count_classes_per_course. Make the following private: compute_average_grade.

	Part 2: Managing Students and Grades
	Part 3: School Administrator’s Tools (admin_tools_package)
	Part 4: Create manage_triggers_package
	 Pass a table name to P_TABLENAME parameter.
	 Pass ‘disable’ or ‘enable’ string to P_ACTION parameter.
	 Pass a trigger name to P_TRIGGER_NAME parameter.

	Part 5: Create Database Triggers

