
Copyright © 2009, Oracle. All rights reserved.

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

Semester 2 Mid Term Review

This slide set covers the following topics:
• Creating Packages
• Managing Package Concepts
• Advanced Package Concepts
• Persistent State of Package Variables
• Using Oracle-Supplied Packages
• Dynamic SQL
• Introduction to Triggers
• Creating DML Triggers

Copyright © 2009, Oracle. All rights reserved.

Creating Packages

4

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

PL/SQL packages are containers that enable you to
bundle related PL/SQL variables, cursors,
exceptions, and subprograms.

For example, a Human Resources package could
contain hiring and firing procedures, commission and
bonus functions, and tax exemption variables.

What Are PL/SQL Packages?

5

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

A package consists of two parts stored separately in
the database:

• Package specification: This declares the
constructs (procedures, functions, variables, and
so on) that can be invoked and used by
applications.

• Package body: This contains the executable
code of the subprograms that were declared in
the package specification. It can also contain its
own variable declarations.

The specification must be created before the body.

Package
specification

Package
body

Components of a PL/SQL Package

6

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

Package
specification

Package
body

Procedure A declaration;

variable

Procedure A definition

BEGIN
…
END;

Procedure B definition …

variable

variable

Components of a PL/SQL Package (continued)

7

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

All public constructs are declared within the package
specification.

• The OR REPLACE option drops and re-creates the package
specification.

• Variables declared in the package specification are initialized
to NULL by default.

• All the constructs declared in a package specification are
visible to users who are granted EXECUTE privilege on the
package.

CREATE [OR REPLACE] PACKAGE package_name
IS|AS

public variable declarations
public subprogram declarations

END [package_name];

Syntax for Creating the Package Specification

Presenter
Presentation Notes
Syntax for Creating the Package Specification

The following are definitions of items in the package syntax:

package_name specifies a name for the package that must be unique among objects within the owning schema. Including the package name after the END keyword is optional.

public type and variable declarations declares public variables, constants, cursors, exceptions, user-defined types, and subtypes.

subprogram specification specifies the public procedure or function declarations.

Note: The package specification should contain procedure and function headings terminated by a semicolon, without the IS (or AS) keyword and its PL/SQL block. The implementation of a procedure or function that is declared in a package specification is done in the package body.

8

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

The package specification should contain procedure and function
headings terminated by a semicolon.

• G_MAX_LENGTH_OF_SERVICE is a constant declared and
initialized in the specification.

• CHK_HIREDATE and CHK_DEPT_MGR are two public
procedures declared in the specification. Their detailed code
is written in the package body.

CREATE OR REPLACE PACKAGE check_emp_pkg
IS
g_max_length_of_service CONSTANT NUMBER := 100;
PROCEDURE chk_hiredate
(p_date IN employees.hire_date%TYPE);

PROCEDURE chk_dept_mgr
(p_empid IN employees.employee_id%TYPE,
p_mgr IN employees.manager_id%TYPE);

END check_emp_pkg;

Creating the Package Specification

9

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

Create a package body to define and implement all public
subprograms and supporting private constructs.

• The OR REPLACE option drops and re-creates the package
body.

• Identifiers defined in the package body are private and not
visible outside the package body.

CREATE [OR REPLACE] PACKAGE BODY package_name IS|AS
private variable declarations
subprogram bodies

[BEGIN initialization statements]
END [package_name];

Syntax for Creating the Package Body

Presenter
Presentation Notes
Syntax for Creating the Package Body

The following are definitions of items in the package body syntax:

package_name specifies a name for the package that must be the same as its package specification. Using the package name after the END keyword is optional.

private type and variable declarations declares private variables, constants, cursors, exceptions, user-defined types, and subtypes.

subprogram specification specifies the full implementation of any private and/or public procedures or functions.

[BEGIN initialization statements] is an optional block of initialization code that executes when the package is first referenced.

10

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

When creating a package body, do the following:
• Specify the OR REPLACE option to overwrite an existing

package body.
• Define the subprograms in an appropriate order. The basic

principle is that you must declare a variable or subprogram
before it can be referenced by other components in the
same package body. It is common to see all private variables
and subprograms defined first and the public subprograms
defined last in the package body.

• The package body must complete the implementation for all
procedures or functions declared in the package
specification.

Creating the Package Body

11

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

CREATE OR REPLACE PACKAGE BODY check_emp_pkg IS
PROCEDURE chk_hiredate
(p_date IN employees.hire_date%TYPE)
IS BEGIN
IF MONTHS_BETWEEN(SYSDATE, p_date) >
g_max_length_of_service * 12 THEN
RAISE_APPLICATION_ERROR(-20200,’Invalid Hiredate’);

END IF;
END chk_hiredate;
PROCEDURE chk_dept_mgr
(p_empid IN employees.employee_id%TYPE,
p_mgr IN employees.manager_id%TYPE)
IS BEGIN ...

END chk_dept_mgr;
END check_emp_pkg;

Creating the Package Body (continued)

Presenter
Presentation Notes
Example of Package Body: comm_pkg

The slide shows the complete package body for comm_pkg, with a private function called validate to check for a valid commission. The validation requires that the commission be positive and greater than the highest commission among existing employees. The reset_comm procedure invokes the private validation function before changing the standard commission in std_comm. In the example, note the following:

The std_comm variable referenced in the reset_comm procedure is a public variable. Variables declared in the package specification, such as std_comm, can be directly referenced without qualification.

The reset_comm procedure implements the public definition in the specification.

In the comm_pkg body, the validate function is private and is directly referenced from the reset_comm procedure without qualification.

Note: The validate function appears before the reset_comm procedure, because the reset_comm procedure references the validate function. It is possible to create forward declarations for subprograms in the package body if their order of appearance needs to be changed. If a package specification declares only types, constants, variables, and exceptions without any subprogram specifications, then the package body is unnecessary. However, the body can be used to initialize items declared in the package specification.

12

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

You invoke packaged procedures and functions in the same way
as non-packaged subprograms, except that you must dot-prefix
the subprogram name with the package name. For example:

You can DESCRIBE a package in the same way as you can
DESCRIBE a table or view:

You cannot DESCRIBE individual packaged subprograms, only
the whole package.

BEGIN
check_emp_pkg.chk_hiredate(’17-Jul-95’);

END;

DESCRIBE check_emp_pkg

Invoking Subprograms

Copyright © 2009, Oracle. All rights reserved.

Managing Package Concepts

14

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

Package
specification

Package
body

(Public)

(Private)

Public subprograms are declared in the
package specification. You can invoke public
subprograms from any calling environment,
provided the user has been granted EXECUTE
privilege on the package.

Private subprograms are declared only in the
package body and can be invoked only by
other (public or private) subprograms within
the same package body. They cannot be
invoked from outside the package.

Components of a PL/SQL Package

Presenter
Presentation Notes
Note: If a package specification does not contain subprogram declarations, then there is no requirement for a package body.

15

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

Scope of Package Components

The scope of a package component states where the component
can be seen and invoked.

Because public subprograms can be seen (by DESCRIBE
package_name) and invoked from inside or outside the
package, you can say that the scope of a public subprogram
includes the whole of the package, and the calling environment.

Because private subprograms cannot be seen or invoked from
outside the package, you can say that the scope of a private
subprogram is limited to the package in which it is defined.

Presenter
Presentation Notes
Instructor Note

Remind students of the discussion of scope of variables in nested blocks earlier in the course (Section 2 Lesson 8).

16

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

Global and Local Package Variables

Variables in packages are also public or private.

If a variable is declared in the specification, it is public. If it is
declared in the package body, it is private, and can be referenced
only within the package.

However, you use different words when describing the scope of
package variables. You call a public variable a global variable,
and you call a private variable a local variable.

Explicit cursors and user-named exceptions are also variables,
and are therefore also global or local.

Presenter
Presentation Notes
Instructor Note:

There is a slight technical difference between the meanings of the terms, but it would confuse students to discuss it here. For our purposes, public means the same as global, and private means the same as local.

17

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me

Example of package specification: salary_pkg:

You have a business rule that no employee’s salary can be
increased by more than 20 percent at one time.

• g_max_sal_raise is a global constant initialized to 0.20.
• update_sal is a public procedure that updates an

employee’s salary.

CREATE OR REPLACE PACKAGE salary_pkg
IS
g_max_sal_raise CONSTANT NUMBER := 0.20;
PROCEDURE update_sal

(p_employee_id IN employees.employee_id%TYPE,
p_new_salary IN employees.salary%TYPE);

END salary_pkg;

Presenter
Presentation Notes
Example of Package Specification: salary_pkg

The validation subprogram for checking whether the salary increase is within the 20% limit will be implemented by a private function declared in the package body.

18

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me

Example of package body: salary_pkg:

•validate_raise is a private function and cannot be
referenced from outside the package.

•v_old_salary is a local variable and cannot be referenced
outside the update_sal procedure.

CREATE OR REPLACE PACKAGE BODY salary_pkg IS
FUNCTION validate_raise ...
END validate_raise;
PROCEDURE update_sal ... IS
v_old_salary employees.salary%TYPE; ...

END update_sal;
END salary_pkg;

Presenter
Presentation Notes
Example of Package Body: salary_pkg

validate_raise is a private function, and be invoked only from other subprograms in the same package.

Note that the function references the global variable g_max_sal_raise.

19

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

After the package is stored in the database, you can invoke
subprograms stored within the same package or stored externally
to the package.

Within the same
package

Specify the subprogram name:

You can fully qualify a subprogram
within the same package, but this is
optional

External to the
package

Fully qualify the subprogram with its
package name:

subprogram

package_name.subprogram

package_name.subprogram

Invoking Package Subprograms

20

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

• Invoke a public procedure:

• Reference a global variable:

BEGIN
salary_pkg.update_sal(100,15000);

END;

BEGIN
DBMS_OUTPUT.PUT_LINE(salary_pkg.g_max_sal_raise);

END;

Invoking Public Package Constructs

Presenter
Presentation Notes
Invoking Package Subprograms

Example 2: Example 3: Calls the reset_comm procedure that is owned in a schema user called SCOTT. Using iSQL*Plus, the qualified package procedure is prefixed with the schema name. This can be simplified by using a synonym that references the schema.package_name.

Assume that a database link named NY has been created for a remote database in which the reset_comm package procedure is created. To invoke the remote procedure, use:

EXECUTE comm_pkg.reset_comm@NY(0.15)

21

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

• To remove the entire package, specification and body, use
the following syntax:

• To remove only the package body, use the following syntax:

DROP PACKAGE package_name;

DROP PACKAGE BODY package_name;

Removing Packages

Presenter
Presentation Notes
Removing Packages

When a package is no longer required, you can use a SQL statement in iSQL*Plus to remove it. A package has two parts; therefore, you can remove the whole package, or you can remove only the package body and retain the package specification.

22

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

The source code for PL/SQL packages is viewable through the
USER_SOURCE and ALL_SOURCE dictionary views.
• To view the package specification, use:

• To view the package body, use:

SELECT text
FROM USER_SOURCE
WHERE name = ‘SALARY_PKG' AND type = 'PACKAGE‘
ORDER BY line;

SELECT text
FROM USER_SOURCE
WHERE name = ‘SALARY_PKG' AND type = 'PACKAGE BODY‘
ORDER BY line;

Viewing Packages in the Data Dictionary

Presenter
Presentation Notes
Viewing Packages in the Data Dictionary

The source code for PL/SQL packages is also stored in the data dictionary tables such as stand-alone procedures and functions. The source code is viewable in the data dictionary when you execute a SELECT statement on the USER_SOURCE and ALL_SOURCE tables.

When querying the package, use a condition in which the TYPE column is:

Equal to 'PACKAGE' to display the source code for the package specification

Equal to 'PACKAGE BODY' to display the source code for the package body

 Note: The values of the NAME and TYPE columns must be uppercase.

23

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

• Construct packages for general use.
• Define the package specification before the body.
• The package specification should contain only those

constructs that you want to be public.
• Place items in the declaration part of the package body when

you must maintain them throughout a session or across
transactions.

• Only recompile the body, if possible, because changes to the
package specification require recompilation of all programs
that call the package.

• The package specification should contain as few constructs
as possible.

Guidelines for Writing Packages

Presenter
Presentation Notes
Guidelines for Writing Packages

Keep your packages as general as possible, so that they can be reused in future applications. Also, avoid writing packages that duplicate features provided by the Oracle server.

Package specifications reflect the design of your application, so define them before defining the package bodies. The package specification should contain only those constructs that must be visible to the users of the package. Thus, other developers cannot misuse the package by basing code on irrelevant details.

Place items in the declaration part of the package body when you must maintain them throughout a session or across transactions. For example, declare a variable called NUMBER_EMPLOYED as a private variable, if each call to a procedure that uses the variable needs to be maintained. When declared as a global variable in the package specification, the value of that global variable is initialized in a session the first time a construct from the package is invoked.

Changes to the package body do not require recompilation of dependent constructs, whereas changes to the package specification require recompilation of every stored subprogram that references the package. To reduce the need for recompiling when code is changed, place as few constructs as possible in a package specification.

24

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

• Modularity: Encapsulating related constructs
• Easier maintenance: Keeping logically related functionality

together
• Easier application design: Coding and compiling the

specification and body separately
• Hiding information:

– Only the declarations in the package specification are visible
and accessible to applications.

– Private constructs in the package body are hidden and
inaccessible.

– All coding is hidden in the package body.

Advantages of Using Packages

Presenter
Presentation Notes
Advantages of Using Packages

Packages provide an alternative to creating procedures and functions as stand-alone schema objects, and they offer several benefits.

Modularity and ease of maintenance: You encapsulate logically related programming structures in a named module. Each package is easy to understand, and the interface between packages is simple, clear, and well defined.

Easier application design: All you need initially is the interface information in the package specification. You can code and compile a specification without its body. Then stored subprograms that reference the package can compile as well. You need not define the package body fully until you are ready to complete the application.

Hiding information: You decide which constructs are public (visible and accessible) and which are private (hidden and inaccessible). Declarations in the package specification are visible and accessible to applications. The package body hides the definition of the private constructs, so that only the package is affected (not your application or any calling programs) if the definition changes. This enables you to change the implementation without having to recompile the calling programs. Also, by hiding implementation details from users, you protect the integrity of the package.

25

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

• Added functionality: Persistency of variables and cursors
• Better performance:

– The entire package is loaded into memory when the package
is first referenced.

– There is only one copy in memory for all users.
– The dependency hierarchy is simplified.

• Overloading: Multiple subprograms of the same name

Advantages of Using Packages (continued)

Presenter
Presentation Notes
Advantages of Using Packages (continued)

Added functionality: Packaged public variables and cursors persist for the duration of a session. Thus, they can be shared by all subprograms that execute in the environment. They also enable you to maintain data across transactions without having to store it in the database. Private constructs also persist for the duration of the session but can be accessed only within the package.

Better performance: When you call a packaged subprogram the first time, the entire package is loaded into memory. Thus, later calls to related subprograms in the package require no further disk I/O. Packaged subprograms also stop cascading dependencies and thus avoid unnecessary compilation.

Overloading: With packages, you can overload procedures and functions, which means you can create multiple subprograms with the same name in the same package, each taking parameters of different number or data type.

Note: Dependencies are covered in detail in the lesson titled “Managing Dependencies.”

Copyright © 2009, Oracle. All rights reserved.

Advanced Package Concepts

27

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

The overloading feature in PL/SQL enables you to develop two or
more packaged subprograms with the same name. Overloading is
useful when you want a subprogram to accept similar sets of
parameters that have different data types.
The overloading feature in PL/SQL:
• Enables you to build flexible ways for invoking the same

subprograms with different data
• Makes tasks easier for the application developer, who has to

remember only one subprogram name.
• Overloading can be done with subprograms in packages, but

not with standalone subprograms.
• The key rule is that you can use the same name for different

subprograms, as long as their formal parameters differ in
number, order, or category of data type.

Overloading Subprograms

28

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

Consider using overloading when the purposes of two or more
subprograms are similar, but the type or number of parameters
used varies.
Overloading can provide alternative ways for finding different
data with varying search criteria. For example, you might want to
find employees by their employee ID, and also provide a way to
find employees by their job ID, or by their hire date. The purpose
is the same, but the parameters or search criteria differ.

CREATE OR REPLACE PACKAGE emp_pkg IS
PROCEDURE find_emp
(p_employee_id IN NUMBER, p_last_name OUT VARCHAR2);
PROCEDURE find_emp
(p_job_id IN VARCHAR2, p_last_name OUT VARCHAR2);
PROCEDURE find_emp
(p_hiredate IN DATE, p_last_name OUT VARCHAR2);

END dept_pkg;

Overloading Subprograms

29

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

You cannot overload:
• Two subprograms if their formal parameters differ only in

data type and the different data types are in the same
category (NUMBER and INTEGER belong to the same
category; VARCHAR2 and CHAR belong to the same
category)

• Two functions that differ only in return type, even if the types
are in different categories

These restrictions apply if the names of the parameters are also
the same. If you use different names for the parameters, then you
can invoke the subprograms by using named notation for the
parameters.

Overloading Restrictions

30

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

Now you invoke a procedure using positional notation:

This fails because ‘Smith’ can be either CHAR or VARCHAR2.
But the following invocation succeeds:

CREATE PACKAGE sample_pack IS
PROCEDURE sample_proc (p_char_param IN CHAR) IS …;
PROCEDURE sample_proc (p_varchar_param IN VARCHAR2)IS …;

END sample_pack;

BEGIN
sample_pack.sample_proc(‘Smith’);

END;

BEGIN
sample_pack.sample_proc(p_char_param =>‘Smith’);

END;

Overloading: Example 2

31

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

In this example, the dept_pkg package specification contains an
overloaded procedure called add_department. The first
declaration takes three parameters that are used to provide data
for a new department record inserted into the department table.
The second declaration takes only two parameters, because this
version internally generates the department ID through an Oracle
sequence.

CREATE OR REPLACE PACKAGE dept_pkg IS
PROCEDURE add_department(p_deptno NUMBER,
p_name VARCHAR2 := 'unknown', p_loc NUMBER := 1700);

PROCEDURE add_department(
p_name VARCHAR2 := 'unknown', p_loc NUMBER := 1700);

END dept_pkg;

Overloading: Example 3

Presenter
Presentation Notes
Overloading: Example

Note: the p_loc formal parameter has a default value of 1700.

Note: The example uses basic data types for its arguments to ensure that the example fits within the slide.

32

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

CREATE OR REPLACE PACKAGE BODY dept_pkg IS
PROCEDURE add_department (p_deptno NUMBER,
p_name VARCHAR2:='unknown', p_loc NUMBER:=1700)

IS
BEGIN
INSERT INTO departments(department_id,
department_name, location_id)
VALUES (p_deptno, p_name, p_loc);

END add_department;

PROCEDURE add_department (
p_name VARCHAR2:='unknown', p_loc NUMBER:=1700)

IS
BEGIN
INSERT INTO departments (department_id,
department_name, location_id)
VALUES (departments_seq.NEXTVAL, p_name, p_loc);

END add_department;
END dept_pkg;

Overloading: Example 3 (continued)

Presenter
Presentation Notes

33

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

If you call add_department with an explicitly provided
department ID, then PL/SQL uses the first version of the
procedure. Consider the following example:

BEGIN
dept_pkg.add_department(980,'Education',2500);

END;

SELECT * FROM departments
WHERE department_id = 980;

DEPARTMENT_ID DEPARTMENT_NAME MANAGER_ID LOCATION_ID

980 Education - 2500

Overloading: Example 3 (continued)

Presenter
Presentation Notes

34

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

If you call add_department with no department ID, then
PL/SQL uses the second version:

BEGIN
dept_pkg.add_department ('Training', 2500);

END;

SELECT * FROM departments
WHERE department_name = 'Training';

DEPARTMENT_ID DEPARTMENT_NAME MANAGER_ID LOCATION_ID

290 Training - 2500

Overloading: Example 3 (continued)

35

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

• A package named STANDARD defines the PL/SQL
environment and built-in functions.

• Most built-in functions are overloaded. You have already
seen that TO_CHAR is overloaded. Another example is the
UPPER function:

• You do not prefix STANDARD package subprograms with the
package name.

FUNCTION UPPER (ch VARCHAR2) RETURN VARCHAR2;
FUNCTION UPPER (ch CLOB) RETURN CLOB;

Overloading and the STANDARD Package

Presenter
Presentation Notes
Overloading and the STANDARD Package

A package named STANDARD defines the PL/SQL environment and globally declares types, exceptions, and subprograms that are available automatically to PL/SQL programs. Most of the built-in functions that are found in the STANDARD package are overloaded. For example, the UPPER function has two different declarations, as shown in the slide. Why not a third variant to accept and return a CHAR? Because CHAR and VARCHAR2 are in the same category. Although a CLOB stores character data, it is in a different category, as students will learn ın Section 11.

36

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

For example, you create your own UPPER function. Then you
invoke UPPER(argument). Which one is executed?

Answer: Even though your function is in your own schema, the
built-in STANDARD function is executed. To call your own function,
you need to prefix it with your schema name:

...
BEGIN
v_return_value := your-schema-name.UPPER(argument);

END;

What if You Create Your Own Function With the Same
Name as a STANDARD Package Function?

Presenter
Presentation Notes
Oracle strongly recommends that you do NOT create a function with the same name as one of the built-in functions.

37

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

• Block-structured languages (such as PL/SQL) must declare
identifiers before referencing them.

• Example of a referencing problem:

• calc_rating is referenced (in award_bonus) before it
has been declared.

CREATE OR REPLACE PACKAGE BODY forward_pkg IS
PROCEDURE award_bonus(...) IS
BEGIN
calc_rating (...); --illegal reference

END;

PROCEDURE calc_rating (...) IS
BEGIN
...

END;
END forward_pkg;

Using Forward Declarations

38

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

You can solve the illegal reference problem by reversing the
order of the two procedures.
However, coding standards often require that subprograms be
kept in alphabetical sequence to make them easy to find. In this
case, you might encounter problems, as shown in the slide
example.
Note: The compilation error for calc_rating occurs only if
calc_rating is a private packaged subprogram. If
calc_rating is declared in the package specification, then it
is already declared as if it was a forward declaration, and its
reference can be resolved by the PL/SQL compiler.

Using Forward Declarations

Presenter
Presentation Notes

39

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

In the package body, a forward declaration is a private
subprogram specification terminated by a semicolon.

CREATE OR REPLACE PACKAGE BODY forward_pkg IS
PROCEDURE calc_rating (...);-- forward declaration

-- Subprograms defined in alphabetical order

PROCEDURE award_bonus(...) IS
BEGIN
calc_rating (...); -- reference resolved!
. . .

END;

PROCEDURE calc_rating (...) IS -- implementation
BEGIN
. . .

END;
END forward_pkg;

Using Forward Declarations

40

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

• Forward declarations help to:
– Define subprograms in logical or alphabetical order
– Define mutually recursive subprograms. Mutually

recursive programs are programs that call each other
directly or indirectly.

– Group and logically organize subprograms in a package
body

• When creating a forward declaration:
– The formal parameters must appear in both the forward

declaration and the subprogram body
– The subprogram body can appear anywhere after the

forward declaration, but both must appear in the same
package body.

Using Forward Declarations (continued)

41

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

Suppose you want to automatically execute some code every
time you make the first call to a package in your session? For
example, you want to automatically load a tax rate into a package
variable.

If the tax rate is a constant, you can initialize the package
variable as part of its declaration:

But what if the tax rate is stored in a database table ?

CREATE OR REPLACE PACKAGE taxes_pkg IS
g_tax NUMBER := 0.20;
...

END taxes_pkg;

Package Initialization Block

Presenter
Presentation Notes
Instructor Note

Point out that we cannot use a SQL statement within a variable declaration:

CREATE OR REPLACE PACKAGE taxes_pkg IS

 g_tax NUMBER := (SELECT rate_value INTO g_tax FROM tax_rates ...); -- Error

…

END taxes_pkg;

42

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

Optionally, you can include an un-named block at the end of the
package body. This block automatically executes once and is
used to initialize public and private package variables.

CREATE OR REPLACE PACKAGE taxes_pkg IS
g_tax NUMBER;
... -- declare all public procedures/functions

END taxes_pkg;

CREATE OR REPLACE PACKAGE BODY taxes_pkg IS
... -- declare all private variables
... -- define public/private procedures/functions
BEGIN
SELECT rate_value INTO g_tax
FROM tax_rates
WHERE rate_name = 'TAX';

END taxes_pkg;

Package Initialization Block

Presenter
Presentation Notes
Instructor Note

If you initialize the variable in the declaration by using an assignment operation, it is overwritten by the code in the initialization block at the end of the package body. The initialization block is terminated by the END keyword for the package body.

43

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

• Package functions can be used in SQL statements.
• Functions called from:

– A query or DML statement must not end the current
transaction, create or roll back to a savepoint, or alter the
system or session.

– A query or a parallelized DML statement cannot execute a
DML statement or modify the database.

– A DML statement cannot read or modify the table being
changed by that DML statement.

Note: A function calling subprograms that break the
preceding restrictions is not allowed.

Restrictions on Using Package Functions in SQL
Statements

Presenter
Presentation Notes
Instructor Note

These are essentially the same restrictions (for the same good reasons) which students have already learnt for non-packaged functions in Section 8.

44

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

CREATE OR REPLACE PACKAGE taxes_pkg IS
FUNCTION tax (p_value IN NUMBER) RETURN NUMBER;

END taxes_pkg;

CREATE OR REPLACE PACKAGE BODY taxes_pkg IS
FUNCTION tax (p_value IN NUMBER) RETURN NUMBER IS
v_rate NUMBER := 0.08;

BEGIN
RETURN (p_value * v_rate);

END tax;
END taxes_pkg;

SELECT taxes_pkg.tax(salary), salary, last_name
FROM employees;

This call succeeds because the function does not
contain any of the restrictions.

Package Function in SQL: Example 1

Presenter
Presentation Notes
Package Function in SQL: Example 1

This function works fine because it does not break any of the rules on the previous slide.

45

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

CREATE OR REPLACE PACKAGE sal_pkg IS
FUNCTION sal (p_emp_id IN NUMBER) RETURN NUMBER;

END sal_pkg;

CREATE OR REPLACE PACKAGE BODY sal_pkg IS
FUNCTION sal (p_emp_id IN NUMBER) RETURN NUMBER IS
v_sal employees.salary%TYPE;

BEGIN
UPDATE employees SET salary = salary * 2
WHERE employee_id = p_emp_id;

SELECT salary INTO v_sal FROM employees
WHERE employee_id = p_emp_id;

RETURN (v_sal);
END sal;

END sal_pkg;

SELECT sal_pkg.sal(employee_id), salary, last_name
FROM employees;

This fails because the function contains an UPDATE.

Package Function in SQL: Example 2

Presenter
Presentation Notes
Package Function in SQL: Example 2

This example breaks the rule that a function called from a query must not execute DML. If it worked, the function would double each employee’s salary. A sample employee has an initial salary of 10000. What value would be returned in the salary column of the query output? 10000 or 20000? It can’t be both.

Copyright © 2009, Oracle. All rights reserved.

Persistent State of Package Variables

Presenter
Presentation Notes
Important Instructor Note

While teaching this lesson you may wish to demonstrate persistent state of package variables. Values in these variables persist, ie remain unchanged unless explicitly changed by the user, until the end of the user’s database session.

However, please ensure that you remain in the SQL Commands window for the whole session. If you leave SQL Commands and go to another Application Express page (for example Home, SQL Scripts or Object Browser) Application Express automatically ends your database session. If you then return to SQL Commands, a new session is automatically started, but you will NOT see the previous values of the variables.

47

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

The collection of package variables and their current values
define the package state. The package state is:
• Initialized when the package is first loaded
• Persistent (by default) for the life of the session

– Stored in the session’s private memory area
– Unique to each session
– Subject to change when package subprograms are called or

public variables are modified.

Other sessions each have their own package state, and do not
see your changes.

Package State

Presenter
Presentation Notes
Persistent State of Packages

The collection of public and private package variables represents the package state for the user session. That is, the package state is the set of values stored in all the package variables at a given point in time. In general, the package state exists for the life of the user session.

Package variables are initialized (in their declarations, by an initialization block, or by default to NULL) the first time a package is loaded into memory for a user session. The package variables are, by default, unique to each session and hold their values until the user session is terminated. In other words, the variables are stored in the private memory area (the UGA memory) allocated by the database for each user session.

The package state changes when a package subprogram is invoked and its logic modifies the variable state. Public package state can be directly modified by operations appropriate to its type.

48

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

The following is a simple package that initializes a single
global variable and contains a procedure to update it:

SCOTT and JONES call the procedure to update the variable.

CREATE OR REPLACE PACKAGE pers_pkg IS
g_var NUMBER := 10;
PROCEDURE upd_g_var (p_var IN NUMBER);

END pers_pkg;

CREATE OR REPLACE PACKAGE BODY pers_pkg IS
PROCEDURE upd_g_var (p_var IN NUMBER) IS
BEGIN
g_var := p_var;

END upd_g_var;
END pers_pkg;

GRANT EXECUTE ON pers_pkg TO SCOTT, JONES;

Package State (continued)

49

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

The following sequence of events occurs: State for:
Time Event Scott Jones

9:00 Scott> .. svar := pers_pkg.g_var; 10 -

9:30 Jones> .. jvar := pers_pks.g_var; 10
Jones> .. pers_pkg.upd_g_var(20); 20
Scott> .. svar := pers_pkg.g_var; 10

9:35 Scott> .. pers_pkg.upd_g_var(50); 50
Jones> .. jvar := pers_pks.g_var; 20

10:00 Scott disconnects and reconnects
in a new session

10:05 Scott> .. svar := pers_pkg.g_var; 10

Package State (continued)

Presenter
Presentation Notes
Persistent State of Package Variables: Example

At 9:00: Scott connects and reads the variable, seeing the initialized value 10.

At 9:30: Jones connects and also reads the variable, also seeing the initialized value 10. At this point there are two separate and independent copies of the value, one in each session’s private memory area. Jones now updates his own session’s value to 20 via the procedure. Scott then re-reads the variable but does not see Jones’s change.

At 9:35: Scott updates his own session’s value to 50. Again, Jones cannot see the change.

At 10:00: Scott disconnects and reconnects, creating a new session.

At 10:05: Scott reads the variable and sees the initialized value 10.

Point out that the changes would not be visible in other sessions even if both sessions are connected under the same username.

50

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

• At 9:00: Scott connects and reads the variable, seeing the
initialized value 10.

• At 9:30: Jones connects and also reads the variable, also seeing
the initialized value 10. At this point, there are two separate and
independent copies of the value, one in each session’s private
memory area. Jones now updates his own session’s value to 20
using the procedure. Scott then re-reads the variable but does not
see Jones’s change.

• At 9:35: Scott updates his own session’s value to 50. Again, Jones
cannot see the change.

• At 10:00: Scott disconnects and reconnects, creating a new
session.

• At 10:05: Scott reads the variable and sees the initialized value 10.
• These changes are not visible in other sessions even if both

sessions are connected under the same user name.

Explanation of the Events on the Previous Slide

51

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

A cursor declared in the package specification is a type of global
variable, and follows the same persistency rules as any other
variable. A cursor’s state is not defined by a single numeric or
other value. A cursor’s state consists of the following attributes:
• Whether the cursor is open or closed
• (If open) how many rows have been fetched from the

cursor(%ROWCOUNT) and whether the most recent fetch
was successful (%NOTFOUND).

Package specification:

CREATE OR REPLACE PACKAGE curs_pkg IS
CURSOR emp_curs IS SELECT employee_id FROM employees;
PROCEDURE open_curs;
FUNCTION fetch_n_rows(n NUMBER := 1) RETURN BOOLEAN;
PROCEDURE close_curs;

END curs_pkg;

Persistent State of a Package Cursor

52

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

CREATE OR REPLACE PACKAGE BODY curs_pkg IS
PROCEDURE open_curs IS
BEGIN
IF NOT emp_curs%ISOPEN THEN OPEN emp_curs;
END IF;

END open_curs;

FUNCTION fetch_n_rows(n NUMBER := 1) RETURN BOOLEAN IS
emp_id employees.employee_id%TYPE;

BEGIN
FOR count IN 1 .. n LOOP
FETCH emp_curs INTO emp_id;
EXIT WHEN emp_curs%NOTFOUND;
DBMS_OUTPUT.PUT_LINE('Id: ' ||(emp_id));

END LOOP;
RETURN emp_curs%FOUND;

END fetch_n_rows;

PROCEDURE close_curs IS BEGIN
IF emp_curs%ISOPEN THEN CLOSE emp_curs;
END IF;

END close_curs;
END curs_pkg;

Persistent State of a Package Cursor: Package Body

53

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

1. Opens the cursor.
2. Fetches (in a loop) and displays three rows at a time until all

rows are fetched.
3. Closes the cursor.

Even though the fetch_n_rows function does not contain an
OPEN, the FETCH does not fail because the cursor is still
open from the previous call to the procedure.

DECLARE
v_more_rows_exist BOOLEAN := TRUE;

BEGIN
curs_pkg.open_curs; --1
LOOP
v_more_rows_exist := curs_pkg.fetch_n_rows(3); --2
EXIT WHEN NOT v_more_rows_exist;

END LOOP;
curs_pkg.close_curs; --3

END;

Invoking CURS_PKG

Presenter
Presentation Notes
Invoking CURS_PKG

The first looped call to fetch_n_rows displays the first three rows:

Id :103

Id :104

Id :105

The second time round the loop, the next three rows are fetched and displayed:

Id :106

Id :107

Id :108

And so on.

54

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

• The first looped call to fetch_n_rows displays the first
three rows. The second time round the loop, the next three
rows are fetched and displayed. And so on.

• This technique is often used in applications that need to
FETCH a large number of rows from a cursor, but can only
display them to the user one screen at a time.

DECLARE
v_more_rows_exist BOOLEAN := TRUE;

BEGIN
curs_pkg.open_curs;
LOOP
v_more_rows_exist := curs_pkg.fetch_n_rows(3);
EXIT WHEN NOT v_more_rows_exist;

END LOOP;
curs_pkg.close_curs;

END;

Invoking CURS_PKG

Copyright © 2009, Oracle. All rights reserved.

Using Oracle-Supplied Packages

56

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

Packages are provided with the Oracle server to allow either of
the following:
• PL/SQL access to certain SQL features
• The extension of the functionality of the database

You can use the functionality provided by these packages when
creating your application, or you might simply want to use these
packages as ideas when you create your own stored procedures.

Using Oracle-Supplied Packages

57

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

DBMS_LOB Enables manipulation of Oracle Large Object
column datatypes: CLOB, BLOB, and BFILE

DBMS_LOCK Used to request, convert, and release locks in the
database through Oracle Lock Management
services

DBMS_OUTPUT Provides debugging and buffering of messages

HTP Writes HTML-tagged data into database buffers

UTL_FILE Enables reading and writing of operating system
text files

UTL_MAIL Enables composing and sending of e-mail
messages

DBMS_SCHEDULER Enables scheduling of PL/SQL blocks, stored
procedures, and external procedures or
executables

List of Some Oracle-Supplied Packages

Presenter
Presentation Notes
List of Some Oracle-Supplied Packages

The list of PL/SQL packages provided with an Oracle database grows with the release of new versions. It would be impossible to cover the exhaustive set of packages and their functionality in this course. For more information, refer to the PL/SQL Packages and Types Reference 10g manual (previously known as the PL/SQL Supplied Packages Reference).

58

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

The DBMS_OUTPUT package sends text messages from any
PL/SQL block into a private memory area called a buffer, from
which the messages can be displayed. It is provided to enable
testing and debugging of PL/SQL programs.

Common uses of DBMS_OUTPUT include:
• You can output results back to the developer for debugging

purposes.
• You can trace the code execution path for a function or

procedure.

The DBMS_OUTPUT Package

59

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

The DBMS_OUTPUT package enables you to send messages from
stored subprograms and anonymous blocks.
• PUT places text in the buffer.
• NEW_LINE sends the buffer to the screen, then empties the buffer.
• PUT_LINE does a PUT followed by a NEW_LINE.
• GET_LINE and GET_LINES read the buffer.
• Messages are not sent until after the calling block finishes.

PUT_LINE

GET_LINE

PUT

NEW_LINE

GET_LINES Buffer

Output

BEGIN
DBMS_OUTPUT...;

END;

How the DBMS_OUTPUT Package Works

Presenter
Presentation Notes
Using the DBMS_OUTPUT Package

Procedures provided by the package include:

PUT to append text from the procedure to the current line of the line output buffer

NEW_LINE to place an end-of-line marker in the output buffer

PUT_LINE to combine the action of PUT and NEW_LINE

GET_LINE to retrieve the current line from the buffer into a procedure variable

GET_LINES to retrieve an array of lines into a procedure-array variable

ENABLE/DISABLE to enable or disable calls to the DBMS_OUTPUT procedures

The buffer size can be set by using:

The SIZE n option appended to the SET SERVEROUTPUT ON command, where n is between 2,000 (the default) and 1,000,000 (1 million characters)

An integer parameter between 2,000 and 1,000,000 in the ENABLE procedure

60

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

DBMS_OUTPUT Is Designed for Debugging Only

For this reason, you should not use DBMS_OUTPUT in subprograms, but
only in anonymous PL/SQL blocks for testing purposes. Instead of:

you should use:

CREATE OR REPLACE PROCEDURE do_some_work IS BEGIN
... DBMS_OUTPUT.PUT_LINE('string'); ... END;

BEGIN do_some_work; END; -- Test the procedure

CREATE OR REPLACE PROCEDURE do_some_work
(p_output OUT VARCHAR2) IS BEGIN
... p_output := 'string'; ... END;

DECLARE v_output VARCHAR2(100); BEGIN --Test the procedure
do_some_work(v_output);
DBMS_OUTPUT.PUT_LINE(v_output); END;

Presenter
Presentation Notes
Instructor Note

Explain that if the first method is used, the procedure will need to be modified and recompiled to omit the DBMS_OUTPUT call in order to call it from a real application. Using the second method, the procedure can be used “as is” without modification.

61

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

The UTL_FILE package allows PL/SQL programs to read and
write operating system text files.

UTL_FILE can access files in operating system directories
defined by a CREATE DIRECTORY statement. You can also use
the utl_file_dir database parameter.

O/S text file
UTL_FILE

CREATE DIRECTORY
my_dir AS '/dir'BEGIN

UTL_FILE...;
END;

The UTL_FILE Package

Presenter
Presentation Notes
Interacting with Operating System Files

The database provides read and write access to specific operating system directories by using:

A CREATE DIRECTORY statement that associates an alias with an operating system directory. The database directory alias can be granted the READ and WRITE privileges to control the type of access to files in the operating system. For example:

CREATE DIRECTORY my_dir AS '/temp/my_files';�GRANT READ, WRITE ON my_dir TO public.

The paths specified in the utl_file_dir database initialization parameter

The preferred approach is to use the directory alias created by the CREATE DIRECTORY statement, which does not require the database to be restarted. The operating system directories specified by using either of these techniques should be accessible to and on the same machine as the database server processes. The path (directory) names may be case sensitive for some operating systems.

Note: The DBMS_LOB package can be used to read binary files on the operating system. DBMS_LOB is covered in the lesson titled “Manipulating Large Objects.”

62

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

Yes

No

Close the
text file

• Reading a file:

• Writing or appending to a file:

Get lines from
the text file

Put lines into
the text file

Open for
reading

Open for
write/append

More to
read?

Yes

No
More to
write?

f:=FOPEN(dir,file,'r')

f:=FOPEN(dir,file,'w')
f:=FOPEN(dir,file,'a')

GET_LINE(f,buf,len)

PUT(f,buf)
PUT_LINE(f,buf) FCLOSE(f)

File Processing Using the UTL_FILE Package

Presenter
Presentation Notes
File Processing Using the UTL_FILE Package

Using the procedures and functions in the UTL_FILE package, open files with the FOPEN function. You then either read from or write or append to the file until processing is done. After completing processing the file, close the file by using the FCLOSE procedure. The following are the subprograms:

The FOPEN function opens a file in a specified directory for input/output (I/O) and returns a file handle used in subsequent I/O operations.

The IS_OPEN function returns a Boolean value whenever a file handle refers to an open file. Use IS_OPEN to check if the file is already open before opening the file.

The GET_LINE procedure reads a line of text from the file into an output buffer parameter. (The maximum input record size is 1,023 bytes unless you specify a larger size in the overloaded version of FOPEN.)

The PUT and PUT_LINE procedures write text to the opened file.

The PUTF procedure provides formatted output with two format specifiers: %s to substitute a value into the output string and \n for a new line character.

The NEW_LINE procedure terminates a line in an output file.

The FFLUSH procedure writes all data buffered in memory to a file.

The FCLOSE procedure closes an opened file.

The FCLOSE_ALL procedure closes all opened file handles for the session.

63

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

File Processing Using the UTL_FILE Package

You open files for reading or writing with the FOPEN function. You
then either read from or write or append to the file until processing is
done. Then, close the file by using the FCLOSE procedure. The
following are the main subprograms:

• The FOPEN function opens a file in a specified directory for
input/output (I/O) and returns a file handle used in later I/O operations.

• The GET_LINE procedure reads a line of text from the file into an
output buffer parameter. The maximum input record size is 1,023
bytes.

• The PUT_LINE procedure writes text to the opened file.
• The NEW_LINE procedure writes a blank line to the file.
• The FCLOSE procedure closes an opened file.

64

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

You might have to handle one of the following exceptions when
using UTL_FILE subprograms:
• INVALID_PATH
• INVALID_MODE
• INVALID_FILEHANDLE
• INVALID_OPERATION
• READ_ERROR
• WRITE_ERROR
• INTERNAL_ERROR

The other exceptions not in the UTL_FILE package are:
• NO_DATA_FOUND
• VALUE_ERROR

Exceptions in the UTL_FILE Package

Presenter
Presentation Notes
Exceptions in the UTL_FILE Package

The UTL_FILE package declares seven exceptions that indicate an error condition in the operating system file processing. The UTL_FILE exceptions are:

INVALID_PATH if the file location or file name was invalid

INVALID_MODE if the OPEN_MODE parameter in FOPEN was invalid

INVALID_FILEHANDLE if the file handle was invalid

INVALID_OPERATION if the file could not be opened or operated on as requested

READ_ERROR if an operating system error occurred during the read operation

WRITE_ERROR if an operating system error occurred during the write operation

INTERNAL_ERROR if an unspecified error occurred in PL/SQL

Note: These exceptions must always be prefaced with the package name. UTL_FILE procedures can also raise predefined PL/SQL exceptions such as NO_DATA_FOUND or VALUE_ERROR.

The NO_DATA_FOUND exception is raised when reading past the end of a file by using UTL_FILE.GET_LINE or UTL_FILE.GET_LINES.

65

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

Opening a Text File using UTL_FILE.FOPEN

To open a text file, the FOPEN function needs to know:
• In which operating system directory the file resides
• The name of the file in that directory
• Whether you want to write to the file or read from it

You pass this information as three IN parameters to the FOPEN function. The
FOPEN function opens the file (if it exists) and returns a “file handle” (a pointer
to the file) into a variable whose datatype must be UTL_FILE.FILE_TYPE.
This is a special datatype used only with UTL_FILE.

DECLARE
v_file_handle UTL_FILE.FILE_TYPE;
BEGIN
v_file_handle := UTL_FILE.FOPEN ('MYDIR','myfile.txt','r');
...
END;

Presenter
Presentation Notes
Instructor Note

In the slide example, MYDIR is the name of an Oracle directory object previously created using CREATE DIRECTORY mydir ….; ‘r’ means we are opening the file for reading, not for writing.

66

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

Reading and Closing the Text File Using UTL_FILE.GET_LINE

When the file is open, all calls to UTL_FILE must pass the file handle that
was returned by FOPEN. You can read one line of text at a time using
GET_LINE. When you reach the end of the file, a NO_DATA_FOUND exception
is raised. Then, you close the file using FCLOSE.

DECLARE
v_file_handle UTL_FILE.FILE_TYPE;
v_text_line VARCHAR2(200);
BEGIN
v_file_handle := UTL_FILE.FOPEN ('MYDIR','myfile.txt','r');
LOOP
UTL_FILE.GET_LINE(v_file_handle, v_text_line);
DBMS_OUTPUT.PUT_LINE(v_text_line);

END LOOP;
EXCEPTION
WHEN NO_DATA_FOUND THEN
UTL_FILE.FCLOSE(v_file_handle);

END;

Presenter
Presentation Notes
Instructor Note

Point out that this is very similar to using an explicit cursor. We FOPEN, GET_LINE (i.e. FETCH) in a loop until we reach the end, then FCLOSE.

Also point out that the file handle V_FILE_HANDLE is the first parameter in the GET_LINE and FCLOSE calls.

67

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

Writing a Text File using UTL_FILE

This is similar to reading a file, except that you must open the file
using ‘w’ for “write,” and write to it using PUT_LINE instead of
GET_LINE. You do not need to test for NO_DATA_FOUND because
you decide when you are finished writing!

DECLARE
v_file_handle UTL_FILE.FILE_TYPE;
BEGIN
v_file_handle := UTL_FILE.FOPEN ('MYDIR','newfile.txt','w');
FOR I IN 1..5 LOOP
UTL_FILE.PUT_LINE(v_file_handle, 'This is line: ' || i);

END LOOP;
UTL_FILE.FCLOSE(v_file_handle);
END;

Presenter
Presentation Notes
Answer: newfile.txt will contain:

This is line: 1

This is line: 2

This is line: 3

This is line: 4

This is line: 5

Copyright © 2009, Oracle. All rights reserved.

Dynamic SQL

69

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

All SQL statements in the database go through various
stages, including:

– PARSE: Pre-execution “is this possible?” checks including
syntax, object existence, privileges, and so on

– EXECUTE: The statement is executed
– FETCH: Results are returned to the user (SELECT only).

When an SQL statement is included in a PL/SQL subprogram,
the parse phase is normally done at compile time, that is,
when the procedure, function, or package body is CREATEd.

If the text of the SQL statement is not exactly known when the
subprogram is created, the PL/SQL compiler cannot parse it.

Execution Flow of SQL

Presenter
Presentation Notes
Steps to Process SQL Statements

All SQL statements have to go through various stages. However, some stages may not be relevant for all statements. The following are the key stages:

Parse: Every SQL statement must be parsed. Parsing the statement includes checking the statement's syntax and validating the statement, ensuring that all references to objects are correct and that the relevant privileges to those objects exist.

Bind: After parsing, the Oracle server may need values from or for any bind variable in the statement. The process of obtaining these values is called binding variables. This stage may be skipped if the statement does not contain bind variables.

Execute: At this point, the Oracle server has all necessary information and resources, and the statement is executed. For nonquery statements, this is the last phase.

Fetch: In the fetch stage, which is applicable to queries, the rows are selected and ordered (if requested by the query), and each successive fetch retrieves another row of the result, until the last row has been fetched.

70

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

You use dynamic SQL to create an SQL statement whose text
is not completely known at compile time.
Dynamic SQL:

• Is constructed and stored as a character string within a
subprogram

• Enables data definition language (DDL) and data control
language (DCL) statements to be written and executed
from PL/SQL

• Is executed with Native Dynamic SQL statements or the
DBMS_SQL package

Dynamic SQL

Presenter
Presentation Notes
Dynamic SQL

The embedded SQL statements available in PL/SQL are limited to SELECT, INSERT, UPDATE, DELETE, COMMIT, and ROLLBACK, all of which are parsed at compile time; that is, they have a fixed structure. You need to use dynamic SQL functionality if you require:

The structure of a SQL statement to be altered at run time

Access to DDL statements and other SQL functionality in PL/SQL

To perform these kinds of tasks in PL/SQL, you must construct SQL statements dynamically in character strings and execute them using either of the following:

Native Dynamic SQL statements with EXECUTE IMMEDIATE

DBMS_SQL package

The process of using SQL statements that are not embedded in your source program and are constructed in strings and executed at run time is known as “dynamic SQL.” Tthe SQL statements are created dynamically at run time and can access and use PL/SQL variables. For example, you create a procedure that uses dynamic SQL to operate on a table whose name is not known until run time, or execute a data definition language (DDL) statement (such as CREATE TABLE), a data control statement (such as GRANT), or a session control statement (such as ALTER SESSION).

71

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

• Provides the ability to execute
SQL statements whose structure
is unknown until execution time

• Is supported by the following
PL/SQL statements:
– EXECUTE IMMEDIATE
– OPEN-FOR
– FETCH
– CLOSE

Native Dynamic SQL

Presenter
Presentation Notes
Native Dynamic SQL

In Oracle 8 and earlier releases, the only way to implement dynamic SQL in a PL/SQL application was by using the DBMS_SQL package. With Oracle 8i and later releases, the PL/SQL environment provides Native Dynamic SQL as an alternative.

Native Dynamic SQL provides the ability to dynamically execute SQL statements whose structure is constructed at execution time. The following statements have been added or extended in PL/SQL to support Native Dynamic SQL:

EXECUTE IMMEDIATE: Prepares a statement, executes it, returns variables, and then deallocates resources

OPEN-FOR: Prepares and executes a statement using a cursor variable

FETCH: Retrieves the results of an opened statement by using the cursor variable

CLOSE: Closes the cursor used by the cursor variable and deallocates resources

You can use bind variables in the dynamic parameters in the EXECUTE IMMEDIATE and OPEN statements. Native Dynamic SQL includes the following capabilities:

Define a dynamic SQL statement

Bind instances of any SQL data types supported in PL/SQL

Handle IN, IN OUT, and OUT bind variables that are bound by position, not by name

72

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

dynamic_string is a SQL statement. It can be a character
literal, or the name of a CHAR or VARCHAR2 variable
containing an SQL statement:

EXECUTE IMMEDIATE dynamic_string;

CREATE PROCEDURE drop_any_table(p_table_name VARCHAR2) IS
BEGIN
EXECUTE IMMEDIATE 'DROP TABLE '||p_table_name;

END;

CREATE PROCEDURE drop_any_table(p_table_name VARCHAR2) IS
v_dynamic_stmt VARCHAR2(50);

BEGIN
v_dynamic_stmt := 'DROP TABLE '||p_table_name;
EXECUTE IMMEDIATE v_dynamic_stmt;

END;

Using the EXECUTE IMMEDIATE Statement

Presenter
Presentation Notes
Using the EXECUTE IMMEDIATE Statement

The EXECUTE IMMEDIATE statement can be used to execute SQL statements or PL/SQL anonymous blocks. The syntactical elements include the following:

dynamic_string is a string expression that represents a dynamic SQL statement (without terminator) or a PL/SQL block (with terminator).

define_variable is a PL/SQL variable that stores the selected column value.

record is a user-defined or %ROWTYPE record that stores a selected row.

bind_argument is an expression whose value is passed to the dynamic SQL statement or PL/SQL block.

INTO clause specifies the variables or record into which column values are retrieved. It is used only for single-row queries. For each value retrieved by the query, there must be a corresponding, type-compatible variable or field in the INTO clause.

USING clause holds all bind arguments. The default parameter mode is IN.

You can use numeric, character, and string literals as bind arguments, but you cannot use Boolean literals (TRUE, FALSE, and NULL).

Note: Use OPEN-FOR, FETCH, and CLOSE for a multirow query. The syntax shown in the slide is not complete as support exists for bulk-processing operations, which is a topic that is not covered in this course.

73

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

Invoke the function just created:

CREATE FUNCTION del_rows(p_table_name VARCHAR2)
RETURN NUMBER IS
BEGIN
EXECUTE IMMEDIATE 'DELETE FROM '||p_table_name;
RETURN SQL%ROWCOUNT;

END;

DECLARE
v_count NUMBER;

BEGIN
v_count := del_rows('EMPLOYEE_NAMES');
DBMS_OUTPUT.PUT_LINE(v_count|| ' rows deleted.');

END;

You Can Use Dynamic SQL With DML Statements:

Presenter
Presentation Notes
Dynamic SQL with a DDL Statement

The code examples show the creation of a create_table procedure that accepts the table name and column definitions (specifications) as parameters.

The call shows the creation of a table called EMPLOYEE_NAMES with two columns:

An ID column with a NUMBER data type used as a primary key

A name column of up to 40 characters for the employee name

Any DDL statement can be executed by using the syntax shown in the slide, whether the statement is dynamically constructed or specified as a literal string. You can create and execute a statement that is stored in a PL/SQL string variable, as in the following example:

CREATE PROCEDURE add_col(table_name VARCHAR2,

 col_spec VARCHAR2) IS

 stmt VARCHAR2(100) := 'ALTER TABLE ' || table_name ||

 ' ADD '||col_spec;

BEGIN

 EXECUTE IMMEDIATE stmt;

END;

/

To add a new column to a table, enter:

Begin

add_col('employee_names', 'salary number(8,2)');

End;

74

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

• Inserting a row into a table with two columns:

• Invoke the procedure just created:

CREATE PROCEDURE add_row(p_table_name VARCHAR2,
p_id NUMBER, p_name VARCHAR2) IS

BEGIN
EXECUTE IMMEDIATE 'INSERT INTO '||p_table_name||

' VALUES (p_id, p_name)';
END;

BEGIN
add_row('EMPLOYEE_NAMES', 250, 'Chang');

END;

Dynamic SQL with DML Statements

Presenter
Presentation Notes
Dynamic SQL with DML Statements

The examples in the slide demonstrate the following:

The del_rows function deletes rows from a specified table and returns the number of rows deleted by using the implicit SQL cursor %ROWCOUNT attribute. Executing the function is shown below the example for creating a function.

The add_row procedure shows how to provide input values to a dynamic SQL statement with the USING clause. The bind variable names :1 and :2 are not important, but the order of the variable names (id and name) in the USING clause is associated to the bind variables by position, in the order of their respective appearance. Therefore, the PL/SQL variable id is assigned to the :1 placeholder, and the name variable is assigned to the :2 placeholder. Placeholder/bind variable names can be alphanumeric but must be preceded with a colon.

Note: The EXECUTE IMMEDIATE statement prepares (parses) and immediately executes the dynamic SQL statement. Dynamic SQL statements are always parsed.

Also, note that a COMMIT operation is not performed in either of the examples. Therefore, the operations can be undone with a ROLLBACK statement.

75

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

Compile PL/SQL code with the ALTER statement:

Create a procedure that recompiles a PL/SQL object whose
name and type is entered at run-time:

ALTER PROCEDURE procedure_name COMPILE;
ALTER FUNCTION function_name COMPILE;
ALTER PACKAGE package_name COMPILE SPECIFICATION;
ALTER PACKAGE package_name COMPILE BODY;

CREATE PROCEDURE compile_plsql
(p_name VARCHAR2,p_type VARCHAR2,p_options VARCHAR2 := NULL)
IS
v_stmt VARCHAR2(200);

BEGIN
v_stmt := 'ALTER '||p_type||' '||p_name||' COMPILE'

||' '||p_options;
EXECUTE IMMEDIATE v_stmt;

END;

Using Native Dynamic SQL to Compile PL/SQL Code

Presenter
Presentation Notes
Using Native Dynamic SQL to Compile PL/SQL Code

The compile_plsql procedure in the example can be used to compile different PL/SQL code using the ALTER DDL statement. Four basic forms of the ALTER statement are shown to compile:

A procedure

A function

A package specification

A package body

Note: If you leave out the keyword SPECIFICATION or BODY with the ALTER PACKAGE statement, then the specification and body are both compiled.

Here are examples of calling the procedure in the slide for each of the four cases, respectively:

EXEC compile_plsql ('list_employees', 'procedure')

EXEC compile_plsql ('get_emp', 'function')

EXEC compile_plsql ('mypack', 'package', 'specification')

EXEC compile_plsql ('mypack', 'package', 'body')

Compiling with DEBUG enabled for the get_emp function:

EXEC compile_plsql ('get_emp', 'function', 'debug')

76

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

Before Oracle Version 8i, the EXECUTE IMMEDIATE
statement did not exist in PL/SQL, and the presupplied
DBMS_SQL package was the only way to write dynamic SQL.

Some of the procedures and functions of the DBMS_SQL
package are:
• OPEN_CURSOR
• PARSE
• BIND_VARIABLE
• EXECUTE
• FETCH_ROWS
• CLOSE_CURSOR

Using the DBMS_SQL Package

Presenter
Presentation Notes
Using the DBMS_SQL Package

Using DBMS_SQL, you can write stored procedures and anonymous PL/SQL blocks that use dynamic SQL, such as executing DDL statements in PL/SQL—for example, executing a DROP TABLE statement. The operations provided by this package are performed under the current user, not under the package owner SYS. The DBMS_SQL package provides the following subprograms to execute dynamic SQL:

OPEN_CURSOR to open a new cursor and return a cursor ID number

PARSE to parse the SQL statement, that is, it checks the statement syntax and associates it with the opened cursor. DDL statements are immediately executed when parsed.

BIND_VARIABLE to bind a given value to a bind variable identified by its name in the statement being parsed. Not needed if the statement does not have bind variables.

EXECUTE to execute the SQL statement and return the number of rows processed

FETCH_ROWS to retrieve the next row for a query (use in a loop for multiple rows)

CLOSE_CURSOR to close the specified cursor

Note: Using the DBMS_SQL package to execute DDL statements can result in a deadlock. For example, the most likely reason is that the package is being used to drop a procedure that you are still using.

77

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

Native Dynamic SQL:

• Is easier to use than DBMS_SQL
• Requires less code than DBMS_SQL
• Often executes faster than DBMS_SQL because there are

fewer statements to execute.

Comparison of Native Dynamic SQL and the DBMS_SQL
Package

Presenter
Presentation Notes
Comparison of Native Dynamic SQL and the DBMS_SQL Package

Native Dynamic SQL provides the following advantages over the DBMS_SQL package.

Ease of use: Because Native Dynamic SQL is integrated with SQL, you can use it in the same way that you currently use static SQL within PL/SQL code. The code is typically more compact and readable compared with the code written with the DBMS_SQL package.

Performance improvement: Native Dynamic SQL performs significantly better than DBMS_SQL, in most circumstances, due to native support provided by the PL/SQL interpreter. The DBMS_SQL approach uses a procedural API and suffers from high procedure call and data copy overhead.

Support for user-defined types: Native Dynamic SQL supports all the types supported by static SQL in PL/SQL. Therefore, Native Dynamic SQL provides support for user-defined types such as user-defined objects, collections, and REFs. The DBMS_SQL package does not support these user-defined types. However, it has limited support for arrays.

Support for fetching into records: With Native Dynamic SQL, the rows resulting from a query can be directly fetched into PL/SQL records. The DBMS_SQL package does not support fetching into records structures.

Copyright © 2009, Oracle. All rights reserved.

Introduction to Triggers

79

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

A database trigger:

• Is a PL/SQL block associated with a
specific action (an event) on a
database object, such as a table or
view.

• Is stored in the database.

• Executes automatically whenever the
associated action occurs.

association

PL/SQL Block

Table, View,
Schema,

Database, or
Application

What Is a Trigger?

80

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

• Database triggers execute automatically whenever a data
event (such as DML or DDL) or a system event (such as a
user connecting, or the DBA shutting down the database)
occurs on a schema or database. Database triggers are
created and stored in the database, just like PL/SQL
procedures, functions and packages.

• Application triggers execute automatically whenever a
particular event occurs within an application. An example of
an application that uses triggers extensively is an application
developed with Oracle Forms Developer.

Application Triggers Compared to Database Triggers

81

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

• DML operations on a table

• DML operations on a view, with an INSTEAD OF trigger

• DDL statements, such as CREATE and ALTER

• Database system events, such as when a user logs on or the
DBA shuts down the database

Triggering Events for Database Triggers

82

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

You can use triggers to:
• Enhance complex database security rules
• Create auditing records automatically
• Enforce complex data integrity rules
• Create logging records automatically
• Prevent tables from being accidentally dropped
• Prevent invalid DML transactions from occurring
• Generate derived column values automatically
• Maintain synchronous table replication
• Gather statistics on table access
• Modify table data when DML statements are issued against

views

Uses of Triggers

Presenter
Presentation Notes
Business Application Scenarios for Implementing Triggers

Develop database triggers in order to enhance features that cannot otherwise be implemented by the Oracle server or as alternatives to those provided by the Oracle server.

83

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

Do not define triggers to duplicate or replace items you can do
more easily in other ways. For example, implement simple data
integrity rules using constraints, not triggers.

Excessive use of triggers can result in complex
interdependencies, which can be difficult to maintain. Use
triggers only when necessary, and be aware of recursive and
cascading effects.

Avoid lengthy trigger logic by creating stored procedures or
packaged procedures that are invoked in the trigger body.

Guidelines for Triggers

84

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

Triggers

Defined with CREATE TRIGGER

Data Dictionary contains source
code in USER_TRIGGERS.

Implicitly invoked.

COMMIT, SAVEPOINT, and
ROLLBACK are not allowed.

Procedures

Defined with CREATE PROCEDURE

Data Dictionary contains source
code in USER_SOURCE.

Explicitly invoked.

COMMIT, SAVEPOINT, and
ROLLBACK are allowed.

Comparison of Database Triggers and Stored Procedures

Presenter
Presentation Notes
Comparison of Database Triggers and Stored Procedures

Triggers are similar to stored procedures. A trigger stored in the database can include SQL and PL/SQL or Java statements to run as a unit and can invoke stored procedures. However, procedures and triggers differ in the way that they are invoked. A procedure is explicitly run by a user, application, or trigger. Triggers are implicitly fired by Oracle when a triggering event occurs, no matter which user is connected or which application is being used.

There are differences between database triggers and stored procedures:

Triggers are fully compiled when the CREATE TRIGGER command is issued and the executable code is stored in the data dictionary.

Note: If errors occur during the compilation of a trigger, the trigger is still created.

Copyright © 2009, Oracle. All rights reserved.

Creating DML Triggers: Part I

86

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

What Is a DML Trigger?

A DML trigger is a trigger that is automatically fired (executed)
whenever a SQL DML statement (INSERT, UPDATE, or DELETE)
is executed. You classify DML triggers in two ways:

• By when they execute: BEFORE, AFTER, or INSTEAD OF the
triggering DML statement

• By how many times they execute: Once for the whole DML
statement (a statement trigger), or once for each row affected by
the DML statement (a row trigger).

Presenter
Presentation Notes
Instructor Note

In the next lesson students will learn about row triggers.

MERGE: you cannot explicitly create a trigger on a MERGE DML statement. However, since a MERGE is really a mixture of INSERTs and/or UPDATEs, creating INSERT and/or UPDATE triggers will produce the same effect.

87

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

The trigger type determines if the body executes for each row or
only once for the triggering statement.
• A statement trigger:

– Executes once for the triggering event
– Is the default type of trigger
– Fires once even if no rows are affected at all

• A row trigger:
– Executes once for each row affected by the triggering event
– Is not executed if the triggering event does not affect any rows
– Is indicated by specifying the FOR EACH ROW clause

Types of DML Triggers

Presenter
Presentation Notes
Types of DML Triggers

You can specify that the trigger will be executed once for every row affected by the triggering statement (such as a multiple row UPDATE) or once for the triggering statement, no matter how many rows it affects.

Statement Trigger

A statement trigger is fired once on behalf of the triggering event, even if no rows are affected at all. Statement triggers are useful if the trigger action does not depend on the data from rows that are affected or on data provided by the triggering event itself (for example, a trigger that performs a complex security check on the current user).

Row Trigger

A row trigger fires each time the table is affected by the triggering event. If the triggering event affects no rows, a row trigger is not executed. Row triggers are useful if the trigger action depends on data of rows that are affected or on data provided by the triggering event itself.

Note: Row triggers use correlation names to access the old and new column values of the row being processed by the trigger.

88

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

timing: When the trigger fires in relation to the triggering
event. Values are BEFORE, AFTER, or INSTEAD
OF.

event: Which DML operation causes the trigger to fire. Values
are INSERT, UPDATE [OF column], and DELETE.

object_name: The table or view associated with the trigger.

trigger_body: The action(s) performed by the trigger; it is a PL/SQL
block with BEGIN and END;

.

CREATE [OR REPLACE] TRIGGER trigger_name
timing
event1 [OR event2 OR event3] ON object_name

trigger_body

Creating DML Statement Triggers

Presenter
Presentation Notes
Creating DML Triggers

The components of the trigger syntax are:

trigger_name uniquely identifies the trigger.

timing indicates when the trigger fires in relation to the triggering event. Values are BEFORE, AFTER, or INSTEAD OF.

event identifies the DML operation causing the trigger to fire.�Values are INSERT, UPDATE [OF column], and DELETE.

object_name indicates the table or view associated with the trigger.

For row triggers you can specify:

A REFERENCING clause to choose a correlation names for referencing the old and new values of the current row (default values are OLD and NEW)

FOR EACH ROW to designate that the trigger is a row trigger

A WHEN clause to apply a conditional predicate, in parentheses, which is evaluated for each row to determine whether or not to execute the trigger body

The trigger_body is the action performed by the trigger, implemented as either of the following:

An anonymous block with a DECLARE or BEGIN, and an END

A CALL clause to invoke a stand-alone or packaged stored procedure, such as:

CALL my_procedure;

89

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

When should the trigger fire?

• BEFORE: Execute the trigger body before the triggering DML
event completes on a table.

• AFTER: Execute the trigger body after the triggering DML
event completes on a table.

• INSTEAD OF: This is used on views that are not otherwise
modifiable. Execute the trigger body instead of the triggering
statement.

Trigger Timing

Presenter
Presentation Notes
Trigger Timing

The BEFORE trigger timing is frequently used in the following situations:

To determine whether the triggering statement should be allowed to complete (This eliminates unnecessary processing and enables a rollback in cases where an exception is raised in the triggering action.)

To derive column values before completing an INSERT or UPDATE statement

To initialize global variables or flags, and to validate complex business rules

The AFTER triggers are frequently used in the following situations:

To complete the triggering statement before executing the triggering action

To perform different actions on the same triggering statement if a BEFORE trigger is already present

The INSTEAD OF triggers provide a transparent way of modifying views that cannot be modified directly through SQL DML statements because a view is not always modifiable. You can write appropriate DML statements inside the body of an INSTEAD OF trigger to perform actions directly on the underlying tables of views.

Note: If multiple triggers are defined for a table, then the order in which multiple triggers of the same type fire is arbitrary. To ensure that triggers of the same type are fired in a particular order, consolidate the triggers into one trigger that calls separate procedures in the desired order.

90

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

This slide shows the firing sequence for a statement trigger
associated with the event INSERT ON departments. A
statement trigger always fires exactly once, no matter how many
rows are affected by the triggering statement.

BEFORE statement
trigger

AFTER statement trigger

INSERT INTO departments
(department_id,department_name, location_id)

VALUES (400, 'CONSULTING', 2500);

Triggering action
DEPARTMENT_ID DEPARTMENT_NAMELOCATION_ID

10 Administration 1700
20 Marketing 1800

50 Shipping 1500

400 CONSULTING 2500

Statement Trigger Firing Sequence

Presenter
Presentation Notes
Trigger-Firing Sequence

Create a statement trigger or a row trigger based on the requirement that the trigger must fire once for each row affected by the triggering statement, or just once for the triggering statement, regardless of the number of rows affected.

When the triggering DML statement affects a single row, both the statement trigger and the row trigger fire exactly once.

Example

The SQL statement in the slide does not differentiate statement triggers from row triggers, because exactly one row is inserted into the table using the syntax for the INSERT statement shown.

91

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

DML Statement Triggers: Example 1

This statement trigger automatically inserts a row into a logging
table every time one or more rows are successfully inserted into
EMPLOYEES.

Application

INSERT INTO EMPLOYEES...;
EMPLOYEES table

LOG_EMP trigger

CREATE OR REPLACE TRIGGER log_emp
AFTER INSERT ON employees BEGIN
INSERT INTO log_emp_table (who, when)
VALUES (USER, SYSDATE);

END;

EMPLOYEE_ID LAST_NAME JOB_

100 King AD_P

101 Kochhar AD_P

102 De Haan AD_P

Presenter
Presentation Notes
Instructor Note

Ask students: why is the trigger created as an AFTER trigger, not a BEFORE trigger? Answer: because we want to log the INSERT only if it is successful. The INSERT into EMPLOYEES could fail (for example because of a constraint violation) but a BEFORE trigger would already have logged the İNSERT by that time.

Point out to students that this is a statement trigger, not a row trigger, and will therefore insert only one row into the logging table even if many employees are inserted, for example by INSERT …. AS SELECT. In real life, a row trigger would be better here.

92

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

Application

INSERT INTO EMPLOYEES...;
EMPLOYEES table

SECURE_EMP trigger

CREATE OR REPLACE TRIGGER secure_emp
BEFORE INSERT ON employees
BEGIN
IF TO_CHAR(SYSDATE,'DY') IN ('SAT','SUN‘) THEN
RAISE_APPLICATION_ERROR(-20500, 'You may insert'
||' into EMPLOYEES table only during '
||' business hours.');

END IF;
END;

EMPLOYEE_ID LAST_NAME JOB_
100 King AD_P

101 Kochhar AD_P

102 De Haan AD_P

Statement Trigger Firing Sequence

Presenter
Presentation Notes
Creating a DML Statement Trigger

In this example, the database trigger SECURE_EMP is a BEFORE statement trigger that prevents the INSERT operation from succeeding if the business condition is violated. In this case, the trigger restricts inserts into the EMPLOYEES table during certain business hours, Monday through Friday.

If a user attempts to insert a row into the EMPLOYEES table on Saturday, then the user sees an error message, the trigger fails, and the triggering statement is rolled back. Remember that the RAISE_APPLICATION_ERROR is a server-side built-in procedure that returns an error to the user and causes the PL/SQL block to fail.

When a database trigger fails, the triggering statement is automatically rolled back by the Oracle server

93

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

INSERT INTO employees (employee_id, last_name,
first_name, email, hire_date,
job_id, salary, department_id)

VALUES (300, 'Smith', 'Rob', 'RSMITH', SYSDATE,
'IT_PROG', 4500, 60);

ORA-20500: You may insert into EMPLOYEES table only during business hours.
ORA-06512: at “USVA_TEST_SQL01_T01.SECURE_EMP”, line 4
ORA-04088: error during execution of trigger ‘USVA_TEST_SQL01_T01.SECURE_EMP’
2. VALUES (300, ‘Smith’, ‘Rob’, ‘RSMITH’, SYSDATE, ‘IT_PROG’, 4500, 60);

Testing SECURE_EMP

Presenter
Presentation Notes
Testing SECURE_EMP

Insert a row into the EMPLOYEES table during nonbusiness hours. When the date and time are out of the business timings specified in the trigger, you get the error message as shown in the slide.

Copyright © 2009, Oracle. All rights reserved.

Creating DML Triggers: Part II

95

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

The advantage of this is a single trigger with a different action for
each triggering DML event.

CREATE OR REPLACE TRIGGER secure_emp BEFORE
INSERT OR UPDATE OR DELETE ON employees BEGIN
IF TO_CHAR(SYSDATE,'DY') IN ('SAT','SUN') THEN
IF DELETING THEN RAISE_APPLICATION_ERROR(
-20502,'You may delete from EMPLOYEES table'||

'only during business hours.');
ELSIF INSERTING THEN RAISE_APPLICATION_ERROR(
-20500,'You may insert into EMPLOYEES table'||

'only during business hours.');
ELSIF UPDATING('SALARY') THEN
RAISE_APPLICATION_ERROR(-20503, 'You may '||
'update SALARY only during business hours.');

ELSE RAISE_APPLICATION_ERROR(-20504,'You may'||
' update EMPLOYEES table only during'||
' normal hours.');

END IF;
END IF;
END;

Using Conditional Predicates

Presenter
Presentation Notes
Combining Triggering Events

You can combine several triggering events into one by taking advantage of the special conditional predicates INSERTING, UPDATING, and DELETING within the trigger body.

Example

Create one trigger to restrict all data manipulation events on the EMPLOYEES table to certain business hours, Monday through Friday.

96

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

You specify a row trigger using FOR EACH ROW.

A row trigger fires once for each row affected by the triggering DML
statement.

CREATE OR REPLACE TRIGGER log_deleted_emps
AFTER UPDATE OF salary ON employees
FOR EACH ROW
BEGIN
INSERT INTO log_emp_table (who, when)
VALUES (USER, SYSDATE);

END;

Creating a DML Row Trigger

Presenter
Presentation Notes
Creating a DML Row Trigger

You can create a BEFORE row trigger in order to prevent the triggering operation from succeeding if a certain condition is violated.

In the example, a trigger is created to allow certain employees to be able to earn a salary of more than 15,000. Suppose that a user attempts to execute the following UPDATE statement:

UPDATE employees

SET salary = 15500

WHERE last_name = 'Russell';

The trigger raises the following exception:

UPDATE EMPLOYEES

 *

ERROR at line 1:�ORA-20202: Employee cannot earn more than $15,000.

ORA-06512: at "PLSQL.RESTRICT_SALARY", line 5

ORA-04088: error during execution of trigger �"PLSQL.RESTRICT_SALARY"

97

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

Row Trigger Firing Sequence

A row trigger fires (executes) once for each row affected by the
triggering DML statement, either just BEFORE the row is processed
or just AFTER. If there are five employees in department 50, the
row trigger on the previous slide executes five times:

UPDATE employees
SET salary = salary * 1.1
WHERE department_id = 50;

BEFORE row trigger
AFTER row trigger...
BEFORE row trigger
AFTER row trigger...

EMPLOYEE_ID LAST_NAME DEPARTMENT_ID

124 Mourgos 50

141 Rajs 50

142 Davies 50

143 Matos 50

144 Vargas 50

98

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

CREATE OR REPLACE TRIGGER audit_emp_values
AFTER DELETE OR INSERT OR UPDATE ON employees
FOR EACH ROW
BEGIN
INSERT INTO audit_emp(user_name, time_stamp, id,
old_last_name, new_last_name, old_title,
new_title, old_salary, new_salary)

VALUES (USER, SYSDATE, :OLD.employee_id,
:OLD.last_name, :NEW.last_name, :OLD.job_id,
:NEW.job_id, :OLD.salary, :NEW.salary);

END;

Using OLD and NEW Qualifiers in a Row-Level Trigger

Presenter
Presentation Notes
Using OLD and NEW Qualifiers

Within a ROW trigger, reference the value of a column before and after the data change by prefixing it with the OLD and NEW qualifiers.

Usage notes:

The OLD and NEW qualifiers are available only in ROW triggers.

Prefix these qualifiers with a colon (:) in every SQL and PL/SQL statement.

There is no colon (:) prefix if the qualifiers are referenced in the WHEN restricting condition.

Note: Row triggers can decrease the performance if you do a lot of updates on larger tables.

99

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

INSERT INTO employees
(employee_id, last_name, job_id, salary, ...)
VALUES (999, 'Temp emp', 'SA_REP', 6000,...);

UPDATE employees
SET salary = 7000, last_name = 'Smith'
WHERE employee_id = 999;

SELECT user_name, timestamp, ...
FROM audit_emp;

USER_NAME TIME_STAMP ID OLD_LAST_NAME NEW_LAST_NAME OLD_TITLE NEW_TITLE OLD_SALARY NEW_SALARY

APEX_PUBLIC_USER 04-DEC-06 999 Temp emp Smith SA_REP SA_REP 100 2000

APEX_PUBLIC_USER 04-DEC-06 - - Temp emp - SA_REP - 1000

:OLD and :NEW Qualifiers: Example Using
audit_emp_values

Presenter
Presentation Notes
Using OLD and NEW Qualifiers: Example Using AUDIT_EMP_TABLE

Create a trigger on the EMPLOYEES table to add rows to a user table, AUDIT_EMP, logging a user’s activity against the EMPLOYEES table. The trigger records the values of several columns both before and after the data changes by using the OLD and NEW qualifiers with the respective column name.

There is an additional column named COMMENTS in AUDIT_EMP that is not shown in this slide.

100

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

Application

INSERT INTO my_view
. . .;

MY_VIEW

INSTEAD OF trigger
INSERT
TABLE1

UPDATE
TABLE2

INSTEAD OF Trigger on a VIEW

Presenter
Presentation Notes
INSTEAD OF Triggers

Use INSTEAD OF triggers to modify data in which the DML statement has been issued against an inherently nonupdatable view. These triggers are called INSTEAD OF triggers because, unlike other triggers, the Oracle server fires the trigger instead of executing the triggering statement. This trigger is used to perform an INSERT, UPDATE, or DELETE operation directly on the underlying tables. You can write INSERT, UPDATE, or DELETE statements against a view, and the INSTEAD OF trigger works invisibly in the background to make the right actions take place. A view cannot be modified by normal DML statements if the view query contains set operators, group functions, clauses such as GROUP BY, CONNECT BY, START, the DISTINCT operator, or joins. For example, if a view consists of more than one table, an insert to the view may entail an insertion into one table and an update to another. So, you write an INSTEAD OF trigger that fires when you write an insert against the view. Instead of the original insertion, the trigger body executes, which results in an insertion of data into one table and an update to another table.

Note: If a view is inherently updatable and has INSTEAD OF triggers, then the triggers take precedence. INSTEAD OF triggers are row triggers. The CHECK option for views is not enforced when insertions or updates to the view are performed by using INSTEAD OF triggers. The INSTEAD OF trigger body must enforce the check.

101

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

Perform the INSERT into the EMP_DETAILS view that is based
on the NEW_EMPS and NEW_DEPTS tables:

INSTEAD OF INSERT
into EMP_DETAILS

INSERT into NEW_EMPS UPDATE NEW_DEPTS

…

1

2 3

INSERT INTO emp_details
VALUES (9001,'ABBOTT',3000, 10, 'Administration');

EMPLOYEE_ID LAST_NAME DEPARTMENT_ID
100 King 90

101 Kochhar 90

102 De Haan 90

10 Administration 940

20 Marketing 1940

DEPARTMENT_ID DEPARTMENT_NAME DEPT_SA

30 Purchasing 3012

40 Human Resources 6500

…

EMPLOYEE_ID LAST_NAME SALARY DEPARTMENT_ID

100 King 24000 90
101 Kochhar 17000 90
102 De Haan 17000 90

9001 ABBOT 3000 10

Creating an INSTEAD OF Trigger

Presenter
Presentation Notes
Creating an INSTEAD OF Trigger

You can create an INSTEAD OF trigger in order to maintain the base tables on which a view is based. The example illustrates an employee being inserted into view EMP_DETAILS, whose query is based on the EMPLOYEES and DEPARTMENTS tables. The NEW_EMP_DEPT (INSTEAD OF) trigger executes in place of the INSERT operation that causes the trigger to fire. The INSTEAD OF trigger then issues the appropriate INSERT and UPDATE to the base tables used by the EMP_DETAILS view. Therefore, instead of inserting the new employee record into the EMPLOYEES table, the following actions take place:

1.	The NEW_EMP_DEPT INSTEAD OF trigger fires.

2.	A row is inserted into the NEW_EMPS table.

3.	The DEPT_SAL column of the NEW_DEPTS table is updated. The salary value supplied for the new employee is added to the existing total salary of the department to which the new employee has been assigned.

Note: The code for this scenario is shown in the next few pages.

102

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

Use INSTEAD OF to perform DML on complex views:

CREATE TABLE new_emps AS
SELECT employee_id,last_name,salary,department_id
FROM employees;

CREATE TABLE new_depts AS
SELECT d.department_id,d.department_name,

sum(e.salary) dept_sal
FROM employees e, departments d
WHERE e.department_id = d.department_id
GROUP BY d.department_id,d.department_name;

CREATE VIEW emp_details AS
SELECT e.employee_id, e.last_name, e.salary,

e.department_id, d.department_name
FROM employees e, departments d
WHERE e.department_id = d.department_id;

Creating an INSTEAD OF Trigger (continued)

Presenter
Presentation Notes
Creating an INSTEAD OF Trigger (continued)

The example creates two new tables, NEW_EMPS and NEW_DEPTS, based on the EMPLOYEES and DEPARTMENTS tables, respectively. It also creates an EMP_DETAILS view from the EMPLOYEES and DEPARTMENTS tables.

If a view has a complex query structure, then it is not always possible to perform DML directly on the view to affect the underlying tables. The example requires creation of an INSTEAD OF trigger, called NEW_EMP_DEPT, shown on the next page. The NEW_DEPT_EMP trigger handles DML in the following way:

When a row is inserted into the EMP_DETAILS view, instead of inserting the row directly into the view, rows are added into the NEW_EMPS and NEW_DEPTS tables, using the data values supplied with the INSERT statement.

When a row is modified or deleted through the EMP_DETAILS view, corresponding rows in the NEW_EMPS and NEW_DEPTS tables are affected.

Note: INSTEAD OF triggers can be written only for views, and the BEFORE and AFTER timing options are not valid.

CREATE OR REPLACE TRIGGER new_emp_dept

INSTEAD OF INSERT OR UPDATE OR DELETE ON emp_details

FOR EACH ROW

BEGIN

 IF INSERTING THEN

 INSERT INTO new_emps

VALUES (:NEW.employee_id, :NEW.last_name, :NEW.salary, :NEW.department_id);

UPDATE new_depts

SET dept_sal = dept_sal + :NEW.salary

WHERE department_id = :NEW.department_id;

ELSIF DELETING THEN

DELETE FROM new_emps

WHERE employee_id = :OLD.employee_id;

UPDATE new_depts

SET dept_sal = dept_sal - :OLD.salary

WHERE department_id = :OLD.department_id;

ELSIF UPDATING ('salary') THEN

UPDATE new_emps

SET salary = :NEW.salary

WHERE employee_id = :OLD.employee_id;

UPDATE new_depts

SET dept_sal = dept_sal + (:NEW.salary - :OLD.salary)

WHERE department_id = :OLD.department_id;

ELSIF UPDATING ('department_id') THEN

UPDATE new_emps

SET department_id = :NEW.department_id

WHERE employee_id = :OLD.employee_id;

UPDATE new_depts

SET dept_sal = dept_sal - :OLD.salary

WHERE department_id = :OLD.department_id;

UPDATE new_depts

SET dept_sal = dept_sal + :NEW.salary

WHERE department_id = :NEW.department_id;

END IF;

END;

/

103

Semester 2 Mid-Term Review

Copyright © 2009, Oracle. All rights reserved.

CREATE OR REPLACE TRIGGER new_emp_dept
INSTEAD OF INSERT ON emp_details
FOR EACH ROW
BEGIN
INSERT INTO new_emps VALUES (:NEW.employee_id,
:NEW.last_name, :NEW.salary, :NEW.department_id);

UPDATE new_depts
SET dept_sal = dept_sal + :NEW.salary
WHERE department_id = :NEW.department_id;

END;

INSTEAD OF triggers are always row triggers.

Creating an INSTEAD OF Trigger on a complex view
(continued)

	Semester 2 Mid-Term Review
	Semester 2 Mid Term Review
	Creating Packages
	What Are PL/SQL Packages?
	Components of a PL/SQL Package�
	Components of a PL/SQL Package (continued)�
	Syntax for Creating the Package Specification�
	Creating the Package Specification�
	Syntax for Creating the Package Body�
	Creating the Package Body�
	Creating the Package Body (continued)�
	Invoking Subprograms
	Managing Package Concepts
	Components of a PL/SQL Package
	Scope of Package Components
	Global and Local Package Variables
	Tell Me / Show Me
	Tell Me / Show Me
	Invoking Package Subprograms�
	Invoking Public Package Constructs��
	Removing Packages�
	Viewing Packages in the Data Dictionary
	Guidelines for Writing Packages�
	Advantages of Using Packages�
	Advantages of Using Packages (continued)�
	Advanced Package Concepts
	Overloading Subprograms�
	Overloading Subprograms�
	Overloading Restrictions
	Overloading: Example 2�
	Overloading: Example 3�
	Overloading: Example 3 (continued)�
	Overloading: Example 3 (continued)�
	Overloading: Example 3 (continued)�
	Overloading and the STANDARD Package�
	What if You Create Your Own Function With the Same Name as a STANDARD Package Function?
	Using Forward Declarations
	Using Forward Declarations
	Using Forward Declarations�
	Using Forward Declarations (continued)�
	Package Initialization Block
	Package Initialization Block
	Restrictions on Using Package Functions in SQL�Statements�
	Package Function in SQL: Example 1�
	Package Function in SQL: Example 2�
	Persistent State of Package Variables
	Package State�
	Package State (continued)�
	Package State (continued)�
	Explanation of the Events on the Previous Slide�
	Persistent State of a Package Cursor�
	Persistent State of a Package Cursor: Package Body�
	Invoking CURS_PKG
	Invoking CURS_PKG�
	Using Oracle-Supplied Packages
	Using Oracle-Supplied Packages
	List of Some Oracle-Supplied Packages��
	The DBMS_OUTPUT Package�
	How the DBMS_OUTPUT Package Works
	DBMS_OUTPUT Is Designed for Debugging Only�
	The UTL_FILE Package
	File Processing Using the UTL_FILE Package��
	File Processing Using the UTL_FILE Package
	Exceptions in the UTL_FILE Package
	Opening a Text File using UTL_FILE.FOPEN
	Reading and Closing the Text File Using UTL_FILE.GET_LINE
	Writing a Text File using UTL_FILE�
	Dynamic SQL
	Execution Flow of SQL
	Dynamic SQL�
	Native Dynamic SQL�
	Using the EXECUTE IMMEDIATE Statement�
	You Can Use Dynamic SQL With DML Statements:�
	Dynamic SQL with DML Statements�
	Using Native Dynamic SQL to Compile PL/SQL Code
	Using the DBMS_SQL Package�
	Comparison of Native Dynamic SQL and the DBMS_SQL Package�
	Introduction to Triggers
	What Is a Trigger?
	Application Triggers Compared to Database Triggers
	Triggering Events for Database Triggers
	Uses of Triggers�
	Guidelines for Triggers�
	Comparison of Database Triggers and Stored Procedures�
	Creating DML Triggers: Part I
	What Is a DML Trigger?�
	Types of DML Triggers�
	Creating DML Statement Triggers��
	Trigger Timing�
	Statement Trigger Firing Sequence��
	DML Statement Triggers: Example 1��
	Statement Trigger Firing Sequence��
	Testing SECURE_EMP�
	Creating DML Triggers: Part II
	Using Conditional Predicates�
	Creating a DML Row Trigger
	Row Trigger Firing Sequence�
	Using OLD and NEW Qualifiers in a Row-Level Trigger
	:OLD and :NEW Qualifiers: Example Using audit_emp_values
	INSTEAD OF Trigger on a VIEW�
	Creating an INSTEAD OF Trigger
	Creating an INSTEAD OF Trigger (continued)�
	Creating an INSTEAD OF Trigger on a complex view (continued)�

