
Copyright © 2008, Oracle. All rights reserved.

Trapping Oracle Server Exceptions

2

Trapping Oracle Server Exceptions

Copyright © 2008, Oracle. All rights reserved.

What Will I Learn?
In this lesson, you will learn to:
• Describe and provide an example of an

error defined by the Oracle server.
• Describe and provide an example of an

error defined by the PL/SQL programmer
• Differentiate between errors that are

handled implicitly and explicitly by the
Oracle server

• Write PL/SQL code to trap a predefined
Oracle server error

• Write PL/SQL code to trap a non-predefined
Oracle server error

• Write PL/SQL code to identify an exception
by error code and by error message

3

Trapping Oracle Server Exceptions

Copyright © 2008, Oracle. All rights reserved.

Why Learn It?
PL/SQL error handling is flexible and allows
programmers to use both errors defined by
the Oracle server and errors defined by the
programmer.
This lesson discusses predefined and non-
predefined Oracle server errors.
Predefined errors are the common Oracle
errors for which PL/SQL has predefined
exception names. Non-predefined errors
make use of the ORA error codes and
messages. The syntax is different for each,
but you can trap both kinds of errors in the
EXCEPTION section of your PL/SQL
program.

4

Trapping Oracle Server Exceptions

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Exception Types

Exception Description Instructions for Handling
Predefined
Oracle server
error

One of approximately 20
errors that occur most
often in PL/SQL code

You need not declare these
exceptions. They are
predefined by the Oracle
server and are raised
implicitly (automatically).

Non-predefined
Oracle server
error

Any other standard
Oracle server error

Declare within the declarative
section and allow the Oracle
Server to raise them implicitly
(automatically).

User-defined
error

A condition that the
PL/SQL programmer
decides is abnormal

Declare within the declarative
section, and raise explicitly.

5

Trapping Oracle Server Exceptions

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Handling Exceptions with PL/SQL
There are two methods for raising an exception
• Implicitly (automatically) by the Oracle server: An Oracle

error occurs and the associated exception is raised
automatically. For example, if the error ORA-01403 occurs
when no rows are retrieved from the database in a SELECT
statement, then PL/SQL raises the exception
NO_DATA_FOUND.

• Explicitly by the programmer: Depending on the business
functionality your program is implementing, you might have
to explicitly raise an exception. You raise an exception
explicitly by issuing the RAISE statement within the block.
The exception being raised can be either user-defined or
predefined. These are explained in the next lesson.

6

Trapping Oracle Server Exceptions

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Two Types of Oracle Server Error

When an Oracle server error occurs, the Oracle server
automatically raises the associated exception, skips the rest of
the executable section of the block, and looks for a handler in the
exception section. There are two types of Oracle server errors:

• Predefined Oracle server errors: Each of these errors has a
predefined name. For example, if the error ORA-01403
occurs when no rows are retrieved from the database in a
SELECT statement, then PL/SQL raises the predefined
exception-name NO_DATA_FOUND.

• Non-predefined Oracle server errors: Each of these errors
has a standard Oracle error number (ORA-nnnnn) and error
message, but not a predefined name. You declare your own
names for these so that you can reference these names in
the exception section.

7

Trapping Oracle Server Exceptions

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Trapping Predefined Oracle Server Errors
• Reference the predefined name in the exception handling

routine.
• Sample predefined exceptions:

– NO_DATA_FOUND
– TOO_MANY_ROWS
– INVALID_CURSOR
– ZERO_DIVIDE
– DUP_VAL_ON_INDEX

• For a partial list of predefined exceptions, refer to the short
list available from the Student Resources in Section 0. For a
complete list of predefined exceptions, see the PL/SQL
User’s Guide and Reference.

8

Trapping Oracle Server Exceptions

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Trapping Predefined Oracle Server Errors
The following example uses the TOO_MANY_ROWS predefined
Oracle server error. Note that it is not declared in the
DECLARATION section.
DECLARE
v_lname VARCHAR2(15);

BEGIN
SELECT last_name INTO v_lname

FROM employees WHERE job_id = 'ST_CLERK';
DBMS_OUTPUT.PUT_LINE('The last name of the ST_CLERK is :

'||v_lname);
EXCEPTION
WHEN TOO_MANY_ROWS THEN

DBMS_OUTPUT.PUT_LINE (' Your select statement retrieved
multiple rows. Consider using a cursor.');
END;

9

Trapping Oracle Server Exceptions

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Trapping Several Predefined Oracle Server Errors
This example handles TOO_MANY_ROWS and NO_DATA_FOUND,
with an OTHERS handler in case any other error occurs.
DECLARE
v_lname VARCHAR2(15);

BEGIN
SELECT last_name INTO v_lname

FROM employees WHERE job_id = 'ST_CLERK';
DBMS_OUTPUT.PUT_LINE('The last name of the ST_CLERK is :

'||v_lname);
EXCEPTION
WHEN TOO_MANY_ROWS THEN

DBMS_OUTPUT.PUT_LINE ('Select statement found multiple rows');
WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT.PUT_LINE ('Select statement found no rows');
WHEN OTHERS THEN

DBMS_OUTPUT.PUT_LINE ('Another type of error occurred');
END;

10

Trapping Oracle Server Exceptions

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Trapping Non-Predefined Oracle Server Errors
Non-predefined exceptions are similar to predefined exceptions;
however, they do not have predefined names in PL/SQL. They
are standard Oracle server errors and have ORA- error numbers.
You create your own names for them in the DECLARE section and
associate these names with ORA- error numbers using the
PRAGMA EXCEPTION_INIT function.

Declarative section

Declare

Name the
exception

Code PRAGMA
EXCEPTION_INIT

EXCEPTION section

Handle the raised
exception

Associate Reference

11

Trapping Oracle Server Exceptions

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Trapping Non-Predefined Oracle Server Errors (continued)

• You can trap a non-predefined Oracle server error by
declaring it first. The declared exception is raised implicitly.
In PL/SQL, the PRAGMA EXCEPTION_INIT tells the
compiler to associate an exception name with an Oracle
error number.

• This allows you to refer to any Oracle Server exception by
name and to write a specific handler for it.

12

Trapping Oracle Server Exceptions

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Non-Predefined Error
Examine the following example.

The INSERT statement tries to insert the value NULL for the
department_name column of the departments table.
However, the operation is not successful because
department_name is a NOT NULL column. There is no
predefined error name for violating a NOT NULL constraint. The
way to work around this problem is to declare you own name and
associate it with the ORA-01400 error.

BEGIN

INSERT INTO departments
(department_id, department_name) VALUES (280, NULL);

END;

13

Trapping Oracle Server Exceptions

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Non-Predefined Error (continued)
1. Declare the name of the exception in the declarative section.

DECLARE

e_insert_excep EXCEPTION;

PRAGMA EXCEPTION_INIT

(e_insert_excep, -01400);

BEGIN

INSERT INTO departments

(department_id, department_name)

VALUES (280, NULL);

EXCEPTION

WHEN e_insert_excep

THEN

DBMS_OUTPUT.PUT_LINE('INSERT FAILED');

END;

1
2

3

Syntax:
exception name EXCEPTION;

where EXCEPTION is the name of
the exception

14

Trapping Oracle Server Exceptions

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Non-Predefined Error (continued)
2. Associate the declared exception with the standard Oracle server
error number using the PRAGMA EXCEPTION_INIT function.

DECLARE

e_insert_excep EXCEPTION;

PRAGMA EXCEPTION_INIT

(e_insert_excep, -01400);

BEGIN

INSERT INTO departments

(department_id, department_name)

VALUES (280, NULL);

EXCEPTION

WHEN e_insert_excep

THEN

DBMS_OUTPUT.PUT_LINE('INSERT FAILED');

END;

1
2

3

PRAGMA EXCEPTION_INIT
(exception,
error_number);
where exception is the
previously declared exception
name and error_number is
a standard Oracle server
error number, including the
hyphen in front of it.

15

Trapping Oracle Server Exceptions

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Non-Predefined Error (continued)
3. Reference the declared exception name within the
corresponding exception-handling routine.

DECLARE

e_insert_excep EXCEPTION;

PRAGMA EXCEPTION_INIT

(e_insert_excep, -01400);

BEGIN

INSERT INTO departments

(department_id, department_name)

VALUES (280, NULL);

EXCEPTION

WHEN e_insert_excep

THEN

DBMS_OUTPUT.PUT_LINE('INSERT FAILED');

END;

1
2

3

16

Trapping Oracle Server Exceptions

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Functions for Trapping Exceptions
When an exception occurs, you can retrieve the associated error
code or error message by using two functions. Based on the
values of the code or the message, you can decide which
subsequent actions to take.
• SQLERRM returns character data containing the message

associated with the error number.
• SQLCODE returns the numeric value for the error code. (You

can assign it to a NUMBER variable.)

SQLCODE Value Description
0 No exception encountered
1 User defined exception
+100 NO_DATA_FOUND exception

Negative number Another Oracle Server error number

17

Trapping Oracle Server Exceptions

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Functions for Trapping Exceptions (continued)
You cannot use SQLCODE or SQLERRM directly in an SQL
statement. Instead, you must assign their values to local
variables, then use the variables in the SQL statement, as shown
in the following example:

DECLARE
v_error_code NUMBER;
v_error_message VARCHAR2(255);

BEGIN
...
EXCEPTION
WHEN OTHERS THEN

ROLLBACK;
v_error_code := SQLCODE ;
v_error_message := SQLERRM ;

INSERT INTO error_log(e_user,e_date,error_code,error_message)

VALUES(USER,SYSDATE,v_error_code,v_error_message);
END;

18

Trapping Oracle Server Exceptions

Copyright © 2008, Oracle. All rights reserved.

Tell Me / Show Me
Terminology
Key terms used in this lesson include:

Predefined Oracle server errors
Non-predefined Oracle server errors
PRAGMA EXCEPTION_INIT
SQLERRM
SQLCODE

19

Trapping Oracle Server Exceptions

Copyright © 2008, Oracle. All rights reserved.

Summary
In this lesson, you learned to:
• Describe and provide an example of an

error defined by the Oracle server.
• Describe and provide an example of an

error defined by the PL/SQL programmer
• Differentiate between errors that are

handled implicitly and explicitly by the
Oracle server

• Write PL/SQL code to trap a predefined
Oracle server error

• Write PL/SQL code to trap a non-predefined
Oracle server error

• Write PL/SQL code to identify an exception
by error code and by error message

20

Trapping Oracle Server Exceptions

Copyright © 2008, Oracle. All rights reserved.

Try It / Solve It
The exercises in this lesson cover
the following topics:
• Listing and describing different

types of PL/SQL exception
handlers

• Differentiating between errors
that are handled implicitly and
explicitly by the Oracle server

• Trapping predefined Oracle
server errors

• Trapping non-predefined Oracle
server errors

	Trapping Oracle Server Exceptions
	What Will I Learn?
	Why Learn It?
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Summary
	Try It / Solve It

