
Copyright © 2008, Oracle. All rights reserved.

Iterative Control: WHILE and FOR Loops

2

Iterative Control: WHILE and FOR Loops

Copyright © 2008, Oracle. All rights reserved.

What Will I Learn?
In this lesson, you will learn to:
• Construct and use the WHILE

looping construct in PL/SQL
• Construct and use the FOR

looping construct in PL/SQL
• Describe when a WHILE loop is

used in PL/SQL
• Describe when a FOR loop is

used in PL/SQL

3

Iterative Control: WHILE and FOR Loops

Copyright © 2008, Oracle. All rights reserved.

Why Learn It?
The previous lesson discussed the basic
loop, which required that the statements
inside the loop execute at least once.

This lesson introduces the WHILE loop
and FOR loop. The WHILE loop is a
looping construct, which requires that
the EXIT condition be evaluated at the
start of each iteration. The FOR loop
should be used if the number of
iterations is known.

4

Iterative Control: WHILE and FOR Loops

Copyright © 2008, Oracle. All rights reserved.

Tell Me/Show Me
WHILE Loops:
You can use the WHILE loop to repeat a sequence of statements
until the controlling condition is no longer TRUE. The condition is
evaluated at the start of each iteration. The loop terminates when
the condition is FALSE or NULL. If the condition is FALSE or NULL
at the start of the loop, then no further iterations are performed.

Syntax:

WHILE condition LOOP
statement1;
statement2;
. . .

END LOOP;

5

Iterative Control: WHILE and FOR Loops

Copyright © 2008, Oracle. All rights reserved.

Tell Me/Show Me
WHILE Loops (continued):
• In the syntax:

– condition is a Boolean variable or expression (TRUE, FALSE, or
NULL)

– statement can be one or more PL/SQL or SQL statements
• If the variables involved in the conditions do not change

during the body of the loop, then the condition remains TRUE
and the loop does not terminate.

• Note: If the condition yields NULL, then the loop is bypassed
and the control passes to the next statement.

WHILE condition LOOP
statement1;
statement2;
. . .

END LOOP;

6

Iterative Control: WHILE and FOR Loops

Copyright © 2008, Oracle. All rights reserved.

Tell Me/Show Me
WHILE Loops (continued):
In the example in the slide, three new location IDs for the country
code CA and the city of Montreal are being added. The counter is
explicitly declared in this example.

DECLARE
v_countryid locations.country_id%TYPE := 'CA';
v_loc_id locations.location_id%TYPE;
v_new_city locations.city%TYPE := 'Montreal';
v_counter NUMBER := 1;

BEGIN
SELECT MAX(location_id) INTO v_loc_id FROM locations

WHERE country_id = v_countryid;
WHILE v_counter <= 3 LOOP

INSERT INTO locations(location_id, city, country_id)
VALUES((v_loc_id + v_counter), v_new_city, v_countryid);
v_counter := v_counter + 1;

END LOOP;
END;

7

Iterative Control: WHILE and FOR Loops

Copyright © 2008, Oracle. All rights reserved.

Tell Me/Show Me
WHILE Loops (continued):
With each iteration through the WHILE loop, a counter (v_counter)
is incremented. If the number of iterations is less than or equal to the
number 3, then the code within the loop is executed and a row is
inserted into the locations table. After the counter exceeds the
number of new locations for this city and country, the condition that
controls the loop evaluates to FALSE and the loop is terminated.

DECLARE
v_countryid locations.country_id%TYPE := 'CA';
v_loc_id locations.location_id%TYPE;
v_new_city locations.city%TYPE := 'Montreal';
v_counter NUMBER := 1;

BEGIN
SELECT MAX(location_id) INTO v_loc_id FROM locations

WHERE country_id = v_countryid;
WHILE v_counter <= 3 LOOP

INSERT INTO locations(location_id, city, country_id)
VALUES((v_loc_id + v_counter), v_new_city, v_countryid);
v_counter := v_counter + 1;

END LOOP;
END;

8

Iterative Control: WHILE and FOR Loops

Copyright © 2008, Oracle. All rights reserved.

Tell Me/Show Me
FOR Loops:
FOR loops have the same general structure as the basic loop. In
addition, they have a control statement before the LOOP keyword
to set the number of iterations that PL/SQL performs.

• Use a FOR loop to shortcut the test for the number of
iterations.

• Do not declare the counter; it is declared implicitly.
• lower_bound .. upper_bound is the required syntax.

FOR counter IN [REVERSE]
lower_bound..upper_bound LOOP

statement1;
statement2;
. . .

END LOOP;

9

Iterative Control: WHILE and FOR Loops

Copyright © 2008, Oracle. All rights reserved.

Tell Me/Show Me
FOR Loops (continued):
• In the syntax:

– Counter is an implicitly
declared integer whose value automatically increases or
decreases (decreases if the REVERSE keyword is used) by 1
on each iteration of the loop until the upper or lower bound is
reached.

– REVERSE causes the counter to decrement with each iteration
from the upper bound to the lower bound. (Note that the lower
bound is still referenced first.)

– lower_bound specifies the lower bound for the range of
counter values.

– upper_bound specifies the upper bound for the range of
counter values.

• Do not declare the counter; it is declared implicitly as an
integer.

FOR counter IN [REVERSE]
lower_bound..upper_bound LOOP

statement1;
statement2;
. . .

END LOOP;

10

Iterative Control: WHILE and FOR Loops

Copyright © 2008, Oracle. All rights reserved.

Tell Me/Show Me
FOR Loops (continued):
• Note: The sequence of statements is executed each time

the counter is incremented, as determined by the two
bounds. The lower bound and upper bound of the loop range
can be literals, variables, or expressions, but must evaluate
to integers. The bounds are rounded to integers—that is,
11/3 or 8/5 are valid upper or lower bounds. The lower
bound and upper bound are inclusive in the loop range. If the
lower bound of the loop range evaluates to a larger integer
than the upper bound, then the sequence of statements will
not be executed.
For example, the following statement is executed only once:

FOR i in 3..3
LOOP
statement1;

END LOOP;

11

Iterative Control: WHILE and FOR Loops

Copyright © 2008, Oracle. All rights reserved.

Tell Me/Show Me
FOR Loops (continued):
You have already learned how to insert three new locations for
the country code CA and the city Montreal by using the simple
LOOP and the WHILE loop. The slide shows you how to achieve
the same by using the FOR loop.

DECLARE
v_countryid locations.country_id%TYPE := 'CA';
v_loc_id locations.location_id%TYPE;
v_new_city locations.city%TYPE := 'Montreal';

BEGIN
SELECT MAX(location_id) INTO v_loc_id

FROM locations
WHERE country_id = v_countryid;

FOR i IN 1..3 LOOP
INSERT INTO locations(location_id, city, country_id)
VALUES((v_loc_id + i), v_new_city, v_countryid);

END LOOP;
END;

12

Iterative Control: WHILE and FOR Loops

Copyright © 2008, Oracle. All rights reserved.

Tell Me/Show Me
FOR Loops:
Guidelines
• Reference the counter within the loop only; it is undefined

outside the loop.
• Do not reference the counter as the target of an assignment.
• Neither loop bound should be NULL.

13

Iterative Control: WHILE and FOR Loops

Copyright © 2008, Oracle. All rights reserved.

Tell Me/Show Me
FOR Loops:
While writing a FOR loop, the lower and upper bounds of a LOOP
statement do not need to be numeric literals. They can be
expressions that convert to numeric values.
Example:

DECLARE
v_lower NUMBER := 1;
v_upper NUMBER := 100;

BEGIN
FOR i IN v_lower..v_upper LOOP
...
END LOOP;

END;

14

Iterative Control: WHILE and FOR Loops

Copyright © 2008, Oracle. All rights reserved.

Tell Me/Show Me
Guidelines For Using Loops :
• Use the basic loop when the statements inside the loop must

execute at least once.
• Use the WHILE loop if the condition has to be evaluated at

the start of each iteration.
• Use a FOR loop if the number of iterations is known.

15

Iterative Control: WHILE and FOR Loops

Copyright © 2008, Oracle. All rights reserved.

Tell Me/Show Me
Terminology
Key terms used in this lesson include:

WHILE loops
FOR loops

16

Iterative Control: WHILE and FOR Loops

Copyright © 2008, Oracle. All rights reserved.

Summary
In this lesson, you learned to:
• Construct and use the WHILE

looping construct in PL/SQL
• Construct and use the FOR

looping construct in PL/SQL
• Describe when a WHILE loop is

used in PL/SQL
• Describe when a FOR loop is

used in PL/SQL

17

Iterative Control: WHILE and FOR Loops

Copyright © 2008, Oracle. All rights reserved.

Try It/Solve It

The exercises in this lesson cover
the following topics:
• Constructing and using WHILE

loops in PL/SQL
• Constructing and using FOR

loops in PL/SQL
• Describing when a WHILE loop

is used in PL/SQL
• Describing when a FOR loop is

used in PL/SQL

	Iterative Control: WHILE and FOR Loops
	What Will I Learn?
	Why Learn It?
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Tell Me/Show Me
	Summary
	Try It/Solve It

